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Abstract. Hypoxia‑ischemia (H/I) brain injury results in 
various degrees of damage to the body, and the imma-
ture brain is particularly fragile to oxygen deprivation. 
Hypothermia and erythropoietin (EPO) have long been known 
to be neuroprotective in ischemic brain injury. Brain‑derived 
neurotrophic factor (BDNF) has recently been recognized as 
a potent modulator capable of regulating a wide repertoire 

of neuronal functions. This review was based on studies 
concerning the involvement of BDNF in the protection of H/I 
brain injury following a search in PubMed between 1995 and 
December, 2011. We initially examined the background of 
BDNF, and then focused on its neuroprotective mechanisms 
against ischemic brain injury, including its involvement 
in promoting neural regeneration/cognition/memory reha-
bilitation, angiogenesis within ischemic penumbra and 
the inhibition of the inflammatory process, neurotoxicity, 
epilepsy and apoptosis. We also provided a literature over-
view of experimental studies, discussing the safety and the 
potential clinical application of BDNF as a neuroprotective 
agent in the ischemic brain injury.
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1. Introduction

Hypoxia‑ischemia (H/I) brain injury results in various degrees 
of damage to the body, and the immature brain is particularly 
fragile to oxygen deprivation, termed hypoxia‑ischemia brain 
damage (HIBD), which can be caused by extreme prematu-
rity or perinatal asphyxia. For adolescents or adults, similar 
pathological changes are often caused by hypertension or 
aneurysm rupture, termed ischemic stroke. These processes 
resulted in hypoxic‑ischemic encephalopathy (HIE).

Hypothermia and erythropoietin (EPO) have long been 
known to be neuroprotective, based on the pathologic changes 
in HIE. For instance, EPO may promote angiogenesis and 
reduce apoptosis (1). Currently, brain‑derived neurotrophic 
factor (BDNF) is also considered to be a potent modulator, 
beneficial to neuronal functions. In this review, we first 
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examined the background of BDNF, then focused on its neuro-
protective mechanisms against ischemic stress, and discussed 
the potential application of BDNF in clinic

2. Brain‑derived neurotrophic factor

Forms. Nerve growth factor (NGF), BDNF, neurotrophins 
(NT) (NT‑3, NT‑4, NT 4/5 and NT‑6) constitute the protein 
family of mammalian NT (2,3). BDNF was discovered in 1982, 
originally described as a small dimeric protein (4). There are 
two types of BDNF: pro‑ and mature BDNF, present in the 
human body (5). Pro‑BDNF is a 32‑kDa precursor, comprising 
247  amino acids with N‑glycosylated and glycosulphated 
residues within the prodomain (6). Following the initial genera-
tion, most of the pro‑BDNF is then packaged into vesicles in 
a regulated pathway and undergoes N‑terminal cleavage by 
extracellular proteases, such as plasmin, metalloproteinase 
gene matrilysin (MMP7) (7,8), tPA/plasmin cascade (8) and 
extracellular matrix‑metalloproteinases (9). In trans‑Golgi 
network (TGN), the ‘pro‑region’ is cleaved resulting in the 
formation of mature BDNF (14 kDa), a biologically active 
form with C‑terminal dimers (10). This mature BDNF is then 
released mainly by the neurons through constitutive secretion 
or in an activity‑dependent manner (6). Another subtype of 
pro‑BDNF, small amounts of a 28‑kDa protein, was identified 
by immunoprecipitation with BDNF antibodies. However, 
it was not an obligatory intermediate in the formation of the 
mature BDNF (11).

Proproteins must undergo a variety of post‑translational 
processes to yield biologically active peptides. The two 
forms of extracellular BDNF, pro‑ and mature BDNF, act in 
different ways. Mature BDNF is crucial in the protection of 
the neonatal or developing brain from ischemia injury (12). 
In cultured hippocampal neurons, low‑ and high‑frequency 
neuronal activities increased pro‑BDNF levels (5). However, 
only high‑frequency activity induces tissue plasminogen acti-
vator secretion, resulting in the conversion of pro‑ to mature 
BDNF (13). Additionally, the highest levels of pro‑BDNF are 
observed perinatally, then it declines with age, although the 
proform remains detectable in adulthood. These data partly 
provide the reason that brains of newborns and infants are 
more fragile to ischemia stroke due to low‑frequency neuronal 
activities and the lack of an adequate amount of mature BDNF 
in the central nervous system (CNS).

BDNF Val66Met is a common single‑nucleotide polymor-
phism (SNP) in the human BDNF gene resulting in a valine 
(Val) to methionine substitution in the prodomain, termed 
Val66Met. The BDNF Val66Met has shed light on psychiatric 
studies, particularly in schizophrenia, anxiety‑like behavior 
and depressive symptoms (14), which belong to the sequelae 
of H/I damage.

Synthesis and location. BDNF is broadly expressed in the 
developing and adult mammalian brain (15), synthesized 
in several areas of the hypothalamus, including the para-
ventricular (PVN), ventromedial (VMN) and dorsomedial 
nuclei (DMN), as well as the lateral hypothalamic area (LH). 
Accordingly, BDNF mRNA and proteins are widespread in 
almost all the cortical areas as well as other tissues, including 
the neural soma, dendrites, fibres and amygdala (16).

Large amounts BDNF are believed to be stored or secreted 
from non‑neuron cells, when attacks occur, such as human 
platelets (17). It was also found to be present in the ependymal, 
microglial and endothelial cells of cerebral arterioles and 
astrocytes, respectively (18). Peripherally, BDNF accumulates 
in the vascular endothelium, neuromuscular synapse, muscle 
and liver tissue (19), which is essential for neuronal repair 
when stroke occurs.

BDNF gene. The rodent BDNF gene was initially described by 
Aid et al (20) and comprises at least eight distinct promoters, 
initiating the transcription of multiple distinct mRNA tran-
scripts, comprising four 5'‑exons (I‑IV) linked to separate 
promoters, and one 3'‑exon (V) that contains the entire open 
reading frame for the BDNF protein. Pruunsild et al  (21) 
have identified new splice variants in human and rodents, 
respectively, demonstrating that at least 11 different BDNF 
transcripts can be generated from the mammalian rodent 
BDNF gene by alternative splicing. The activation of various 
BDNF promoters is region‑specific and depends on the type 
of stimulus (22). A single BDNF protein is produced from 
several splice variants with different 5'‑UTRs (23,24).

3. Receptors of BDNF and signalling pathways

If left uncleaved, pro‑BDNF selectively activates its high‑  
affinity receptor, the p75 receptor, mainly inducing pro‑apop-
totic signalling pathways (25). Mature BDNF binds with high 
specificity to the tropomyosin‑related kinase receptor type B 
(TrkB) (26) and to the low‑affinity neurotrophin receptor p75, 
then exerts its actions via interactions between these two trans-
membrane receptors, separately or in collectively, potentially 
leading to neuronal death or survival.

TrkB. The Trk receptor tyrosine kinase family includes TrkA 
and TrkC, which are receptors for NGF and NT3, respectively. 
The family also includes TrkB, which mediates the effects of 
BDNF and NT 4/5 (27).

BDNF exerts multiple biological actions through TrkB 
receptors (13,28). Similar to BDNF, TrkB is widely expressed 
in the adult brain, including the cortex, hippocampus, multiple 
brain stem and spinal cord nuclei (29).

Several TrkB isoforms have been observed in the mamma-
lian CNS. The full‑length TrkB isoform is a typical tyrosine 
kinase wherein homodimerization during ligand binding 
causes intracellular cross‑tyrosine phosphorylations (30). In 
addition, truncated forms of TrkB [T1 and T2 in rat; T1 and 
T‑Src homology and collagen protein (T-Shc) in humans] 
lacking the tyrosine kinase component of the receptor, are 
found in neurons and glia. T1 is predominantly expressed in the 
brain and may act as a dominant negative inhibitor of BDNF 
signalling by forming heterodimers with full‑length TrkB (31).

BDNF binding to TrkB triggers autophosphorylation of 
the tyrosine residue in its intracellular domain, leading to 
ligand‑induced dimerization in each receptor, which activates 
several intracellular signalling pathways with various func-
tions (32). More specifically, when NT binds to Trk receptors, 
three enzymes are considered to be the main regulators: 
mitogen‑activated protein kinase (MAPK), phosphatidylino-
sitol‑3 kinase (PI3K) (33) and phospholipase C γ (PLCγ) (34).
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Trk family members recruit and increase the phosphoryla-
tion of PLCγ and the Src homology and collagen protein (Shc). 
Binding of the adaptor proteins Shc and the growth factor 
receptor substrates 2 (FRS‑2) to Trk leads to the activation 
of the PI3K/Akt and MAPK pathways (35). Several small G 
proteins, including Rap‑1 and the Cdc‑42‑Rac‑Rho family, 
also participate in this process (34). The role of the ERK and 
PI3‑kinase pathways in neonatal H/I brain injury in the pres-
ence of BDNF is gradually becoming clear (36,37). Docking 
of PLCγ to a separate site of TrkB leads to the production of 
diacylglycerol, a transient activator of protein kinase C (PKC) 
and inositol trisphosphate (IP3), and eventually mobilizes 
intracellular calcium (38).

Trk receptor activation has variable downstream speci-
ficity, and significant cross‑talk is observed among the sites of 
action in these three pathways.

p75. p75, also known as p75NTR (p75 neurotrophin receptor), 
is a member of the tumor necrosis factor receptor (TNF) 
superfamily. In adulthood its expression is restricted to basal 
forebrain cholinergic neurons and is present in relatively few 
cortical neurons (39). p75 is mainly expressed during early 
neuronal development, whereas in adults, p75 is re‑expressed 
in various pathological conditions, including epilepsy, axotomy 
and neurodegeneration (40).

The low‑affinity receptor p75 binds to pro‑neurotrophin 
with high affinity, transmitting positive and negative intra-
cellular signals. It is particularly significant in mediating 
pro-neurotrophin signalling and often induces inversed 
biological effects on TrkB receptors (41). When compared 
to mature BDNF, pro‑BDNF promotes neuronal survival via 
TrkB, preferentially activating p75 to mediate neuronal cell 

death, particularly apoptosis (42). Therefore, the amount of 
pro‑BDNF is critical in neuronal cell death.

An analysis of the spatiotemporal profile of p75 expression 
after an ischemic lesion induced by cortical devascularization 
(CD) demonstrated that p75 expression is expressed in isolated 
neurons within the ischemic lesion site. These p75+ neurons 
present morphological alterations and active caspase‑3 
staining. Peak p75 expression has been shown to occur 3 days 
post‑lesion in the penumbra. Therefore, the authors conclude 
that p75 expression is localized in selected neurons in the 
ischemic lesion and that these p75+ neurons are probably 
condemned to apoptotic cell death (39).

Several signalling pathways have been implicated in the 
actions of p75 in the absence of Trk receptors, including the 
induction of nuclear factor‑κ Β (NF‑κΒ) and c‑Jun kinase 
activities (43).

Chaperone proteins. Chaperone proteins, carboxypeptidase E 
(CPE) (44) and sortilin (14), are two additional receptors of 
BDNF. The binding of BDNF to the lipid‑raft‑associated 
sorting receptor CPE in the TGN is necessary for sorting into 
secretory vesicles. CPE is subsequently internalized and trans-
ported through the endocytic recycling compartment back to 
the TGN (45). Most BDNF in this regulated secretory pathway 
is transported to post‑synaptic dendrites and spines (46).

Sortilin interacts specifically with BDNF in a region 
encompassing methionine substitution and co‑localizes with 
BDNF in secretory granules in neurons. Certain p75+ neurons 
are also positive for sortilin (47). CPE and sortilin have thus 
been identified as candidate proteins that potentially regulate 
the intracellular localization of BDNF within neurons (48). 
The ways BDNF exhibits positive effects is shown in Fig. 1.

Figure 1. Possible mechanisms of brain‑derived neurotrophic factor (BDNF) in neuronal survival after hypoxia‑ischemia (H/I). Pro-BDNF  
selectively activates p75 receptor, thereby inducing pro-apoptotic signalling pathways (25). Mature BDNF binds with kinase receptor type B (TrkB), exhibiting 
a positive effect in two ways, i.e., one side promotes neural regeneration and rehabilitation of cognition and memory, while the other side is against the 
pathological process of inflammation, neurotoxicity, periventricular leukomalacia, epilepsy and apoptosis.
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4. BDNF has neuroprotective effect in experimental stroke 
models

The major neuropathology after H/I insult begins during the 
acute insult and extends into the reperfusion phase (49). The 
progress is short for ischemia/reperfusion (I/R) injury. It may 
involve the following pathophysiologic aspects: i) apoptosis; ii) 
free‑radical generation and activation of inflammatory media-
tors, e.g., acidosis (50); iii) excessive extracellular glutamate 
excitotoxicity and intracellular accumulation of calcium (51) 
and iv) depleted energy reserves and loss of high‑energy 
phosphate compounds. Thus, energy deprivation along with 
increased levels of harmful factors, either intracellular or 
extracellular, disrupts neuronal homeostasis. Consequently, 
clinical manifestations, such as periventricular leukomalacia, 
epilepsy, cognition and memory deficiency were also present.

In the subsequent sections, the mechanism of the action 
of BDNF in multiple protective roles against ischemic brain 
injury is examined.

Anti‑apoptosis. Evidence showed that BDNF was beneficial for 
the survival of neurons through anti‑apoptotic effect. Infected 
with adeno‑associated viral vector inserted with BDNF gene 
(AAV‑BDNF), neurite cells may be able to produce BDNF 
function to promote its own outgrowth and protect neurons 
from serum deprivation‑induced apoptosis (52). Besides, 
cultured rat hippocampal neurons were injured by amyloid 
β and then infected with AAV‑BDNF to examine the neuro-
protective effects of BDNF. The results showed that the Ca2+ 

balance was maintained in the AAV‑BDNF treatment group, 
and that BDNF may reduce neuron apoptosis by increasing the 
expression of the Bcl‑2 anti‑apoptosis protein and inhibiting 
intracellular calcium overload (53).

In vitro, 2.1 µg/day BDNF were delivered continuously via 
intraventricular infusion pumps. The mean infarct volume after 
venous occlusion was significantly smaller in BDNF‑treated rats 
at 2 days (1.49±1.44 vs. 3.66±1.51%), and fewer TUNEL‑positive 
apoptotic cells were detected 2 days later (17.0±15.1 vs. 39.0±19.6) 
compared to the controls (54). Similarly, in global ischemia 
induced by a four‑vessel occlusion in rat, 0.06 mg/h BDNF 
diluted in artificial cerebral spinal fluid was administered by 
an osmotic minipump, which was implanted after reperfusion. 
Data showed that the pyramidal cell count was 439.6±18.5 in 
the BDNF group, and 18.3±10.6 in the ischemia group at day 
7 (55). When 5 mg human BDNF was injected intravitreally 
after H/R, the number of TUNEL‑ and caspase‑2‑positive cells 
in the BDNF‑treated group vs. the control was 545.2±29.7 vs. 
22370.3±122.5 cells/mm2 and 124.4±35.4 vs. 244.6±15.7 cells/
mm2 at 6 h after reperfusion (56). Additionally, in a postnatal day 
7 rat model, H/I injury to the developing brain is a strong apop-
totic stimulus leading to caspase‑3 activation, although BDNF 
can block this process in vivo (28).

Anti‑inflammation. Inflammation responds to cerebral isch-
emia rapidly, activates the local inflammatory cells (mostly 
microglia), producing relevant mediators and translocation of 
intercellular nuclear factors.

Cytokines and chemokines that trigger leukocyte 
infiltration or glial activation and proliferation, are released 
following ischemia, and might either be beneficial or 

detrimental. A possible contributor to this dichotomy of 
responses depends on the degree to which proximal neurons 
are injured. Twenty four hours after hypoxia‑exposure of 
the neuronal cultures, the classic microglial proinflamma-
tory mediators, including inducible nitric oxide synthase 
(iNOS), TNF and interleukin‑1‑β (IL-1β), are upregulated 
only in response to mild neuronal injuries, while the trophic 
microglial effector BDNF is upregulated in response to the 
degrees of neuronal ischemia injuries (57,58).

In the inflammatory process, BDNF may promote microg-
lial proliferation and phagocytic activity in vitro (59) and 
increase the number of phagocytotic microglia and activated 
microglia that, in turn, secretes BDNF (60). When conditioned 
media from injured neurons [neuron‑conditioned media; 
(NCM)] were added to microglial cultures following H/I, 
BDNF released from microglia was upregulated, suggesting 
that BDNF might contribute to the anti‑inflammatory activity 
induced by microglia (61). TNF‑α has been proven to exac-
erbate cerebral injury of ischemia (62), while interleukin 
(IL‑10), an anti‑inflammatory cytokine, has a neuroprotective 
role in ischemic stroke (63). Jiang et al (60) reconfirmed that 
intranasal administration of BDNF in H/I rats can suppress 
TNF‑α and its mRNA expression, while increasing IL‑10 
and its mRNA expression. Peng et al (64) treated neural stem 
cells (NSCs) with BDNF siRNA, and found that imipramine 
(IM) increases the neuroprotective effects, suppresses the 
inflammatory process in NSCs via the modulation of the 
MAPK pathway and Bcl‑2 cascades, indirectly evaluating the 
anti‑inflammatory effect of BDNF.

Anti‑neurotoxicity. Depletion of glucose and oxygen supply 
causes a primary energy failure and initiates a cascade of 
biochemical events leading to cell dysfunction. A consequent 
reperfusion injury often deteriorates the brain metabolism by 
increasing the oxidative stress damage.

Neurotoxicant trimethyltin (TMT) induces a significant 
reduction of cell survival, neuronal differentiation and 
concomitant earlier activation of cleaved caspase‑3. However, 
overexpression of BDNF firmly protects differentiated NSC 
against TMT‑induced neurotoxicity through the PI3K/Akt and 
MAPK‑signaling pathways (65). Addition of 100 mM ethanol 
to a human neuronal cell model, SH‑SY5Y cells, showed the 
secreted amount of BDNF and the cyclic AMP‑responsive 
element‑binding protein (CREB) activity to be significantly 
reduced by ethanol. Additionally, exogenous BDNF has a 
protective effect against ethanol‑induced damage in primary 
culture neurons from rat hippocampi (66).

BDNF resists glutamate cytotoxicity depending on 
its concentration (67). Glutamate is the major excitatory 
neurotransmitter in the brain, always binding its receptor 
glutamate receptors N‑methyl‑D‑aspartate receptor (NMDAR) 
under pathological circumstances, causing ascendency of 
cytosolic calcium (68). Following H/I, the concentrations of 
glutamate and ATP are increased (61), and excitatory amino 
acids (EAA) are secreted, allowing glutamate to accumulate 
to excitotoxic levels. BDNF inhibited neurotoxicity induced 
by glutamate and NO donors in cultured cortical neurons, 
especially dopamine neurons (69).

Furthermore, BDNF mRNA accumulates in distal dendrites 
to activate NMDAR and TrkB receptor (70), the former might 
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have pro‑apoptotic excitotoxic activity. By contrast, signal-
ling via TrkB has been largely considered to protect neurons 
antagonizing the NMDAR‑mediated excitotoxic cell death. 
The cross-talk and feedback loops between BDNF and the 
NMDAR signalling was reviewed by Georgiev et al (71).

Promotion of neural regeneration. Neurogenesis involves cell 
proliferation, migration and differentiation (46). To facilitate 
regeneration among central and peripheral neurons after H/I, 
the enrichment of BDNF around the injured region is essen-
tial. Zhu et al (72) evaluated functional recovery following 
the transplantation of BDNF‑modified neural stem cells 
(NSCs) in a rat model of cerebral ischemia damage induced 
by temporary middle cerebral artery occlusion (tMCAO). 
Their findings showed that BDNF protein expression in rat 
embryonic NSCs transfected with the human BDNF gene 
(BDNF‑NSCs) was upregulated, while neurite outgrowth 
in ganglion neurons were simulated, suggesting that BDNF 
increased neurogenesis in vitro. In vivo, BDNF promoted 
recovery of temporary middle cerebral artery occlusion. Zhu 
et al also assessed the neurological function deficiency for 
12 weeks using the neurological severity score (NSS). NSS 
was significantly lower in the BDNF‑NSC-transfected trans-
plant group compared to the control groups for the 10‑week 
time period (72).

BDNF may allow sustained regenerative signalling at 
synaptic sites (35). It induces structural instability in dendrites 
and spines restricted to particular portions of a dendritic arbor, 
and may help translate activity patterns into specific morpho-
logical changes (73). Furthermore, BDNF may increase the 
expression of markers for axonal sprouting and synaptogenesis, 
such as MAP1/2 or synaptophysin. Post‑ischemic intravenous 
BDNF treatment improves functional motor recovery after 
thrombotic stroke (74).

Angiogenesis, another contribution of BDNF should be 
mentioned. Injection of BDNF fused with a collagen‑binding 
domain (CBD‑BDNF) into the lateral ventricle of MCAO rats, 
promoted neural regeneration and angiogenesis. Induction of 
neural differentiation of adipose‑derived mesenchymal stem 
cells (ASCs) led to nerve repair and growth also via BDNF 
production. Nerve fiber length in ASCs matrigel implants was 
1.3‑fold greater compared to the control (75).

Protection against periventricular leukomalacia (PVL). In 
premature infants, the H/I damage to the cerebral white matter 
usually involves PVL. Selected neuronal circuits as well as 
immature periventricular oligodendroglia, may die from the 
excitotoxicity, leading to chronic neurologic disability with 
cerebral palsy (76). In a previous study, Husson et al  (77) 
injected rats with ibotenate generating white matter cysts 
resembling those detected in PVL. Those authors found that 
such white matter cysts in cortical and white matter lesions are 
reduced by BDNF. However, the exact effect was dependent 
upon the type of activated glutamate receptors, lesion localiza-
tion and the developmental stage (Table I).

Anti‑epilepsy. Various studies have demonstrated that 
BDNF contributes to epileptogenesis (78). For example, 
mesio‑temporal lobe epilepsy (MTLE) was significantly 
aggravated in mice with increased TrkB signals, but delayed 

in mutant mice with reduced TrkB signals. Paradoxically, with 
respect to temporal lobe epilepsy (TLE), previous studies have 
demonstrated that BDNF‑induced Trk activation may lead to 
neuropeptide Y (NPY) upregulation, while NPY‑knockout 
animals are more susceptible to seizures. Therefore, intrahip-
pocampal infusion of BDNF potentially attenuates (or retards) 
the development of epilepsy (79).

Contributions to cognitive functions and memory acquisition. 
Cerebral ischemia may lead to a progressive global cognitive 
deterioration. The involvement of BDNF in cognitive func-
tions, particularly in memory acquisition and consolidation is 
highly attractive.

BDNF is essential for NSC‑induced cognitive rescue, 
which has been observed in aged 3x transgenic Alzheimer's 
disease (Tg‑AD) mice with spatial learning and memory 
deficiencies. Gain‑of‑function studies demonstrated that 
recombinant BDNF mimics might have beneficial effects on 
NSC transplantation, while loss‑of‑function studies showed 
that mice depleted of NSC‑derived BDNF failed to improve 
cognition or restore hippocampal synaptic density (80). To 
investigate the effect of BDNF on hippocampal cognitive 
functions after global cerebral ischemia in rats, BDNF was 
administered continuously over 14 days via an osmotic mini-
pump, intracerebroventricularly after four‑vessel occlusion. 
Cognitive impairment was also assessed repeatedly using 
a passive avoidance test. In ischemic animals treated with 
BDNF, the working and reference memory ratios 15 days after 
ischemia were lower in the ischemic rats. These data indicate 
a protective effect of BDNF for synaptic transmission and 
cognitive functions after transient forebrain ischemia (81).

Furthermore, voluntary exercise upregulates BDNF within 
the hippocampus, inducing improvements in cognitive perfor-
mance after traumatic brain injury in rats (82).

With regard to the function of memory, BDNF has been 
known to induce memory persistence, and convert a non‑lasting 
long‑term memory (LTM) trace into a persistent one. When 
BDNF gene expression in the hippocampus was inhibited, a 
deficiency of memory formation was observed (83).

5. Applications and challenges

While designing treatment strategies aimed at improving stroke 
recovery, greater attention should be paid to non‑neuronal 
cells which are able to produce substantial amounts of BDNF 
after ischemic stroke. Evidence has shown that ischemic stroke 
in rats results in increased BDNF staining in neurons and 
ependymal cells in the non‑lesioned hemisphere. Similarly, in 
the lesioned hemisphere, microglial and endothelial cells of 
cerebral arterioles and astrocytes also exhibit robust BDNF 
staining (18).

Transposition of BDNF to the target injury regions is a 
challenge in clinical applications, while a short half‑life and 
a low rate of transport through the blood‑brain barrier (BBB) 
is hampered. Such problems may be solved in various ways.

First, by fusing a laminin‑binding domain (LBD) to BDNF 
a laminin‑binding BDNF (LBD‑BDNF) form is constructed, 
since laminin is a rich extracellular matrix in the CNS, and is 
highly expressed in ischemic regions. LBD‑BDNF is associ-
ated with a parallel improvement in neurological functional 
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Table I. Experiments on the roles of brain‑derived neurotrophic factor (BDNF) in hypoxic-ischemic (H/I) injury.

Experimental model	 Treatment for injury	 Intervention	 BDNF activity for neuroprotection	 Refs.

BDNF protects the brain from hypoxic-ischemic injury

Cerebellar	 H/I	 BDNF	 BDNF has a direct effect on mature	 (84)
granule neurons	 Low K+ (5 mM)	 100 ng/ml	 cerebellar granule neurons
culture			   and can protect these neurons
			   from apoptosis in low K+

Cerebellar	 With K+ (5 mM) 	 BDNF	 BDNF protects from K+/serum	 (33)
granule neurons		  1‑100 ng/ml	 deprivation-induced apoptotic
culture			   death of cerebellar
			   granule neurons
Cerebellar	 H/I	 BDNF	 BDNF in the anti-apoptotic	 (85)
granule neurons	 Low K+ (5 mM)	 100 ng/ml	 effect of NMDA in cerebellar
culture			   granule neurons
Newborn	 Left common carotid	 BDNF	 BDNF treatment virtually eliminated the	 (86)
SD rats	 artery was permanently	 ICV injection	 increase in caspase-3-like activity induced
	 ligated	 5 µg/animal	 by HI BDNF to block H/I-induced
			   caspase-3 activation and tissue loss
Newborn	 Left common carotid	 BDNF	 BDNF protects the neonatal brain from H/I	 (37)
SD rats	 artery was permanently	 ICV injection	 injury in vivo via the ERK pathway, BDNF
	 ligated, 8% oxygen	 5 µg/animal	 provides a promising solution to hypoxic
	 flowed for 2.5 h		  injury due to its survival-promoting effects
Cultured neurons	 Hypoxia	 BDNF 100 ng/ml	 BDNF is highly involved in preventing	 (87)
from embryonic	 85% N2, 5% CO2,	 24 h prior to 	 cortical neurons from hypoxia-induced
SD rats	 10% H2	 hypoxia/immediately	 neurotoxicity
Cultured neurons	 Hypoxia	 BDNF 50 ng/ml	 The activation of ERK‑ and AKT‑signalling	 (37)
from embryonic	 85% N2, 5% CO2, 	 30 min	 pathway-mediated BDNF
SD rats	 10% H2	 before hypoxia	 neuroprotective function against
			   hypoxic-induced neurotoxicity
Cultured neurons	 Hypoxia	 BDNF	 Extrinsic BDNF has a neuroprotective	 (88)
from embryonic	 85% N2, 5% CO2,	 25, 50, 100 ng/ml	 effect against hypoxic-induced
SD rats	 10% H2	 24 h before hypoxia/	 neurotoxicity
		  immediately
Cultured neurons	 Hypoxia	 BDNF 100 ng/ml	 The Ras-MAPK approach may be the	 (89)
from embryonic	 85% N2, 5% CO2, 	 24 h before hypoxia/	 major signal transferring way of BDNF in
SD rats	 10% H2	 immediately	 protecting the cortical neurons from
			   H/I‑induced neurotoxicity
Pregnant rats 	 Artery clamp	 BDNF	 BDNF demonstrates neuroprotective	 (90)
		  2 µg was injected to	 effects on rat embryo brain cells suffering
		  caudal veins	 from intrauterine H/I injury
			   via the ERK signalling pathway
Adult female	 MCAO 10 min of	 HBO	 HBO preconditioning may be neuroprotective	 (91)
SD rats	 four-vessel occlusion		  by reducing early apoptosis and inhibition
			   of the conversion of early to late apoptosis, 
			   possibly through an increased brain
			   BDNF level
Gerbil	 Transient cerebral	 Extract from TCE	 Repeated supplement of TCE-protected	 (92)
	 ischemia		  neurons from ischemic damage induced by
			   transient cerebral ischemia by maintaining
			   BDNF levels
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Table I. Continued.

Experimental model	 Treatment for injury	 Intervention	 BDNF activity for neuroprotection	 Refs.

Cultured neurons	 Transient cerebral	 Escitalopram	 Pre- and post-treatments with escitalopram	 (93)
from embryonic	 ischemia in the	 30 mg/kg	 protects against ischemia-induced
SD rats	 hippocampal CA1		  neuronal death in the CA1 induced
	 pyramidal cells		  by transient cerebral ischemic damage by
		   	 the increase of BDNF
Cultured neurons	 Hypoxia	 BDNF 50 ng/ml	 BDNF has neuroprotective effect	 (31)
from embryonic	 85% N2, 5% CO2,		  on embryonic rat cortical
SD rats	 10% H2		  neurons against hypoxia via
			   CREB phosphorylation
Cultured neurons	 Hypoxia	 BDNF 50 ng/ml	 Hypoxia rapidly blocking ERKl/2 signalling	 (94)
from embryonic	 85% N2,5% CO2,		  pathway is involved in the
SD rats	 10% H2		  protective effect of BDNF against hypoxic injury
			   on in vitro‑cultured neurons
Rat	 Global ischemia	 0.06 mg/h BDNF	 BDNF inhibited the neuronal degeneration	 (55)
		  intracerebro-	 in the hippocampal regions
		  ventricularly
Rats	 Cerebral venous	 BDNF	 The mean infarct volume after venous	 (54)
	 ischemia	 2.1 µg/day	 occlusion was smaller, and fewer
			   TUNEL-positive apoptotic cells were detected
			   in BDNF-treated rats
Adult male	 MCAO	 LBD-BDNF	 LBD-BDNF‑reduced infarct volume is	 (86)
SD rats		  0.2 nmol injected	 associated with a parallel improvement
		  into the right brain	 in neurological functional outcome
			   and neurogenesis in the dentate
			   gyrus of the hippocampi
Rats	 Temporary occlusion	 Intranasal BDNF	 BDNF protects	 (95)
	 of the MCA (120 min)		  brain from ischemic insult via modulating
			   local inflammation in rats
Adult female	 Ischemia	 Human BDNF	 The number of TUNEL- and	 (56)
SD rats	 (60 min)	 5 µg	 caspase-2-positive cells was lower in
			   the BDNF-treated group at 6 h,
			   after reperfusion
Cortical neurons	 H/I	 1, 10, 50,	 BDNF demonstrated protection against	 (28)
from rat embryos		  100 ng/ml	 apoptotic cell death
Rats	 MCAO	 CBD-BDNF 10 µl/ 	 CBD-BDNF promoted neural regeneration	 (96)
		  Nat‑BDNF 10 µl/	 and angiogenesis, reduced cell loss,
		  lateral ventricle	 decreased apoptosis and improved
			   functional recovery

BDNF inhibition protects the brain from hypoxic-ischemic injury

Rat cortical		  BDNF	 BDNF-induced neuronal necrosis was	 (97)
cell cultures		  10, 30, 100 ng/ml	 accompanied by reactive oxygen
			   species production
Mixed cortical	 Serum-free	 BDNF 100 ng/ml	 The role of NADPH oxidase in oxidative	 (98)
cell cultures	 EMEM		  neuronal death induced in cortical
			   cultures by BDNF

H/I, hypoxia‑ischemia; SD, Sprague Dawley;  CBD-BDNF, collagen-binding BDNF; HBO, hyperbaric oxygen; ICV, intracerebroventricular 
injection; LBD-BDNF, laminin-binding domain to BDNF construct laminin-binding BDNF; MCA, middle cerebral artery; MCAO, middle 
cerebral artery occlusion model; TCE, Terminalia chebula Retz seeds; ERK, extracellular signal-regulated kinases; NMDA, N-methyl-D-
aspartate; CREB, cyclic AMP‑responsive element‑binding protein; EMEM, Eagle's minimal essential medium; NADPH, nicotinamide 
adenine dinucleotide phosphate.
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outcomes, and effectively attenuates neural degeneration 
after permanent middle cerebral artery occlusion in rats (86). 
Similarly, injection of CBD‑BDNF in the ventricle remained 
stable for much longer compared to mature BDNF, while the 
CBD‑BDNF concentrated at the infarcted hemisphere and 
exerted a more enduring therapeutic effect (96).

Second, the problem may also be resolved by improving 
BDNF delivery into the target region. Studies have suggested 
the intranasal access to potentially be effective when deliv-
ering BDNF to the target region. Elevated concentration of 
BDNF in brain tissues following intranasal delivery can reach 
4 ng/g, as opposed to only 0.2 ng/g in the controls (60).

Third, BDNF mimetics may also be used to overcome 
the therapeutic challenges. Based on a loop domain of 
BDNF that binds to a key receptor of TrkB, pharmacophores 
were generated. Four candidate molecules designated as 
LM22A1‑LM22A4 were selected. In mouse hippocampal 
neuronal cultures, these compounds promoted cell survival 
with an efficacy comparable to that of BDNF. Of note, unlike 
BDNF, LM22A4 did not bind to the receptor p75, which is 
considered to mediate the pain‑promoting effects of BDNF. 
Furthermore, LM22A4 was considered suitable for intranasal 
administration to mice. Once‑daily dosing of this compound 
for 7  days in in  vivo experiments, not only increased the 
activation of TrkB in the hippocampus and striatum, but also 
significantly improved the impairment in motor learning, 
following traumatic brain injury. Such mimetics provide a 
promising new approach to the application of BDNF in the 
treatment of H/I injury (99).

6. Conclusion

During the last decade, the neuroprotective effects of BDNF, 
its underlying mechanisms and signal transductions have been 
investigated. Evidence from in vitro studies as well as animal 
models have demonstrated that BDNF is a potential novel 
candidate of defence against ischemia brain injury. However, 
since the signalling pathway is complicated and bidirectional, 
application of BDNF in neuroprotection in humans remains 
to be elucidated. Therefore, additional studies focusing on 
BDNF, its mechanisms or application, need to be conducted 
in the future.
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