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Abstract. Proviral integration site for Moloney murine leukemia 
virus-1 (Pim-1) is a serine/threonine kinase that regulates 
multiple cellular functions such as cell cycle, cell survival, drug 
resistance. Aberrant elevation of Pim‑1 kinase is associated 
with numerous types of cancer. Two distinct isoforms of Pim‑1 
(Pim‑1S and Pim‑1L) show distinct cellular functions. Pim‑1S 
predominately localizes to the nucleus and Pim‑1L localizes to 
plasma membrane for drug resistance. Recent studies show that 
mitochondrial Pim‑1 maintains mitochondrial integrity. Pim‑1 
is emerging as a cancer drug target, particularly in prostate 
cancer. Recently the potent new functions of Pim‑1 in immuno-
therapy, senescence bypass, metastasis and epigenetic dynamics 
have been found. The aim of the present updated review is to 
provide brief information regarding networks of Pim‑1 kinase 
and focus on its recent advances as a novel drug target.
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1. Introduction

Proviral integration site for Moloney murine leukemia virus‑1 
(Pim‑1) kinase is observed to interact with numerous proteins 
participating in various signaling pathways (Fig. 1) (1,2). The 
Pim‑1 gene was originally identified as a proviral integra-
tion site for Moloney murine leukemia virus‑1. Pim‑1 is a 
proto‑oncogene that encodes a serine/threonine kinase, which 
has a crucial role in oncogenesis (3). This proto‑oncogene 
was originally found in hematopoietic cells as a member of 
the Pim family (Pim‑1, Pim‑2 and Pim‑3). Transcription 
of Pim‑1 can be activated by several interleukins, such as 
interleukin‑2 (IL‑2), IL‑3 and IL‑6. It has been shown that 
the Pim‑1 kinase has an essential role in cytokine‑induced 
signal transduction by controlling transcription factors (4). 
Upregulation of Pim‑1 is correlated with cell proliferation 
induced by mitogens or cytokines, while downregulation of 
Pim‑1 is correlated with growth retention due to the absence 
of cytokines (3). Additionally, deficiency of Pim‑1 kinase leads 
to failure in cell survival and growth (1‑3). Recent studies 
have shown that Pim‑1 is required in drug resistance and has 
important roles in prostate cancer. In addition, new functions 
of Pim‑1 have been revealed in immunotherapy, senescence 
bypass, epigenetic dynamics and cancer metastasis.

Pim‑1 has two isoforms, Pim‑1L and Pim‑1S, which 
are encoded by the Pim‑1 gene due to different translation 
initiation sites. Human Pim‑1L is the longer isoform with 
a molecular mass of 44 kDa, while Pim‑1S is the shorter 
isoform with a molecular mass of 33  kDa. Compared to 
Pim‑1S, Pim‑1L contains an additional proline‑rich PXXP 
motif at the N‑terminus. The extra domain of Pim‑1L may 
allow Pim‑1L to interact with more proteins and crosstalk 
with more signaling networks. For example, our previous 
study identified that the proline‑rich domain of Pim‑1L 
directly interacts with the SH3 domain of Etk (5). Notably, 
Pim‑1S predominately localizes into the nucleus and cytosol; 
however, Pim‑1L mainly localizes at the plasma membrane in 
prostate cancer cells (5). This cellular localization difference 
indicates the distinct role of Pim‑1L and Pim‑1S in cancer. Of 
note, human Pim‑1 kinase protein sequences are similar to 
that of murine pim‑1 kinase (6). In addition, human Pim‑1S 
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and Pim‑1L have a hinge region and a catalytic domain (7). 
The Pim‑1 kinase can be inactivated through altering 
lysine to methionine in the kinase domain (at position 67 of 
Pim‑1S) (8).

Pim‑1 transcription can be activated by interleukins 
followed by signaling transduction to the nucleus through 
two families of proteins, Janus kinase (JAK)/signal trans-
ducers and activators of transcription (STAT) (Fig. 1). STAT 
proteins can increase the expression of Pim‑1 kinase by 
binding to the promoter of the Pim‑1 gene. This is widely 
found in the classical upstream of the Pim‑1 signaling 
pathway. However, a previous study indicated that Pim‑1 can, 
in turn, downregulate the JAK/STAT pathway (9). In detail, 
Pim‑1 expression is induced by STAT3 and STAT5 where-
upon Pim‑1 kinase phosphorylates and stabilizes SOCS1 
and SOCS3. Upon phosphorylation, SOCS proteins become 
more suppressive by interacting with active JAK proteins 
and blocking phosphorylation of STAT proteins (Fig. 1) (10). 
In addition, phosphorylated STAT3 triggers Pim‑1 expres-
sion during human pulmonary hypertension, which in turn 
contributes to proliferation of smooth muscle cells  (11). 
Thus, Pim‑1 may form a feedback loop with the JAK/STAT 
pathway for tight regulation of its own expression and func-
tion. Numerous Pim‑1 phosphorylation substrates have been 
identified, which are involved in cell cycle, cell growth and 
cell survival  (Fig. 1). For example, Pim‑1 phosphorylates 
cell cycle regulator p21, which thereby dissociates p21 with 
proliferating cell nuclear antigen binding to regulate cell cycle 
and proliferation (12) and phosphorylates p27 to promote 
cell cycle progression (13). Cell survival depends on signals 
that inhibit apoptosis. One of the main regulators of cell 
survival is the B‑cell lymphoma‑2 (Bcl‑2) family comprising 
Bcl‑2, Bcl‑xL and myeloid cell leukemia‑1 (MCL‑1)  (14). 
According to studies by Kumar et al (15), the inactivation 
of Bcl‑2‑associated death promoter (BAD) can occur due 
to phosphorylation at Ser‑75 by Pim‑1, thus strengthening 
the dissociation of Bak with Bcl‑xL. Therefore, Pim‑1 is 
important for Bcl‑xL pro‑survival effect. This statement 
was further supported by the fact that inhibition of Pim‑1 
kinase suppresses phosphorylation of Bad, which in turn 
increases LY294002‑induced apoptosis in prostate cancer 
LNCaP cells (15). In addition, multiple signaling networks 
are regulated by Pim‑1 and have been reviewed by numerous 
researchers suggesting that Pim‑1 may be a master regulator 
of cell function (1) (Fig. 1). The following text will focus on 
the essential new functions of Pim‑1 in cancer.

2. Pim‑1 as an immunotherapy target

Increasing evidence has shown that Pim‑1 would be a novel and 
essential drug target in numerous types of cancer (16), in partic-
ular prostate cancer (17). Pim‑1 transcription is regulated by 
interleukins (ILs), which implicates that Pim‑1 can be a potential 
target for immunotherapy. Our previous study showed that IL‑6 
can induce Pim‑1L and Pim‑1S expression (5). Treatment with 
neutralized IL‑6 antibody, results in the decrease of Pim‑1L and 
Pim‑1S expression in prostate cancer cells (5). This suggests that 
targeting Pim‑1 has a great potential in immunotherapy.

Directly targeting Pim‑1 using a specific monoclonal 
antibody to Pim‑1 has been tested in preclinical studies. 

Treatment with the specific antibody to Pim‑1 (mAb P9) 
in SCID mice inoculated with DU145 cells subcutaneously 
decreased the tumor growth. Additionally, the growth rate 
of tumors generated from C57BL/6 mice inoculated with 
TRAMP‑C1 cells also was decreased by this antibody (18). 
Antibody P9 induces apoptotic pathway by specific interac-
tion with Pim‑1. They also found that the treatment with 
Pim‑1 antibody P9 significantly inhibited the level of Pim‑1 
kinase in prostate cancer cell lines, such as PC‑3, DU145 
and TRAMP‑C1 with changes in protein kinase B (or AKT), 
heat‑shock protein 90 and caspase pathways (18). A previous 
study also showed that the treatment with P9 decreased the 
growth of human leukemia cell lines  (19). Our previous 
studies identified that Pim‑1L (44 kDa) expresses on cell 
membrane to mediate drug resistance in prostate cancer 
cells (5,20). Combined treatment with the Pim‑1 antibody 
P9 and chemotherapy drugs decreased prostate cancer cell 
growth (18).

Human cluster of differentiation 4 [CD4(+)] CD25(high)
FOXP3(+) T regulatory cells (T regs), which have functional 
plasticity, can differentiate into effector T  cells induced 
by inf lammation  (21). FOXP3 is a specific transcrip-
tion factor that determines development of T  regs and is 
critical for obtaining the inhibitory abilities of T regs (22). 
According to recent studies FOXP3 is regulated through 
phosphorylation, which affects its DNA binding ability and 
stability (22,23). Pim‑1 expression can be regulated through 
T  cell receptor signaling and IL‑6 in in  vitro‑expanded 
T regs (21). Recent studies have shown that human FOXP3 
is phosphorylated by Pim‑1 kinase at Ser‑422, which 
blocks FOXP3 chromatin‑binding activity for expression 
of target genes. When in vitro‑expanded T reg cells were 
treated with a Pim‑1‑specific inhibitor, 3‑cyano‑4‑phenyl‑6‑ 
(3‑bromo‑6‑hydroxy)phenyl‑2(1H)‑pyridone, they exhibited 
increased suppressive activity. This means that Pim‑1 kinase 
diminishes the suppressive activity of in  vitro‑expanded 
T  regs by inhibiting human FOXP3  (21). From several 
studies, it has been revealed that T regs may be one of the 
reasons for unsuccessful cancer immunotherapies due to 
inhibiting tumor elimination and activity of tumor‑associated 
antigen‑specific lymphocytes (24). Therefore, the efficiency 
of antitumor immunotherapies can be improved through 
suppression of T regs via inhibition of FOXP3 by targeting 
Pim‑1 kinase.

3. Pim‑1 as a drug resistance target

Emerging evidence has shown that Pim‑1 kinase has been 
associated with the drug‑resistant abilities of cancer cells (25). 
Pim‑1 mediates drug resistance through interaction with and 
phosphorylation of Etk (5), P‑glycoprotein (Pgp) (26), breast 
cancer resistant protein (BCRP) (20) and fms‑like tyrosine 
kinase 3 (FLT3) (27,28)  (Fig. 2). The original findings on 
Pim‑1‑mediated drug resistance come from the early study that 
Pim‑1 overexpression allows cells to undergo prolonged survival 
upon withdrawal of IL‑3 (29). Following this, Pim‑1‑mediated 
drug resistance in prostate cancer was identified as a mecha-
nism of inhibiting p53‑induced apoptosis (5). Mechanistically, 
Pim‑1L competes with p53 to bind non‑receptor tyrosine 
kinase Etk. Etk signaling has an important role in this drug 
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resistance as Pim‑1L, but not Pim‑1S, directly interacts with 
Etk at the plasma membrane while Etk signaling can promote 
cell survival by inhibiting p53 (30). Thus, Pim‑1L showed a 
higher ability to protect the prostate cancer cells to undergo 
apoptosis induced by chemotherapy drugs. At that time, it was 
unclear whether Pim‑1 mediated drug resistance was only due 
to reduced cell apoptosis or through a mechanism of multiple 
drug resistance mediated by adenosine triphosphate‑binding 
cassette  (ABC) drug transporters. Subsequent discoveries 

benefited from a yeast two‑hybrid system using full‑length 
Pim‑1L to screen novel Pim‑1L‑binding proteins. Our first 
study regarding Pim‑1L‑mediated multiple drug resistance 
explained the molecular mechanism that Pim‑1L phosphory-
lates BCRP at Thr‑362 resulting in BCRP dimerization and 
its translocation to the plasma membrane (20). This suggests 
that translocation of the phosphorylated ABC transporter by 
Pim‑1 promotes drug resistance via efflux drugs outside of the 
cells (10,20). Pgp is another member of the ABC family (31). 

Figure 1. Proviral integration site for Moloney murine leukemia virus‑1 (Pim‑1) is regulated through the Janus kinase (JAK)/signal transducers 
and activators of transcription (STAT) pathway and regulates multiple signaling pathways, such as cell survival, cell cycle and cell growth.

Figure 2. Proviral integration site for Moloney murine leukemia virus‑1 (Pim‑1) promotes cancer drug resistance. Phosphorylation of breast cancer resistant 
protein (BCRP), P‑glycoprotein (Pgp) and fms‑like tyrosine kinase 3 (FLT3)‑internal tandem duplication (ITD) leads to changes in their stability or cellular 
localization, which results in decreased efficiency of antitumor therapies. Thus, Pim‑1 is a promising antitumor target.
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It is known that Pgp must translocate to the plasma membrane 
to enhance drug efflux activity (32). Pim‑1 kinase also phos-
phorylates Pgp and protects it from proteasomal degradation 
through stabilizing Pgp and enhancing its cell surface expres-
sion (26). Combined inhibitors of Pgp and Pim‑1 enhance 
drug efficiency by increased apoptosis of drug resistant cancer 
cells (26).

In addition to Etk, another tyrosine kinase that interacts 
with Pim‑1 for drug resistance is FLT3. FLT3 is a receptor 
tyrosine kinase that can be found in normal cells, as well 
as in cancerous cells (33). However, FLT3 tends to mutate 
by internal tandem duplication (ITD), which accounts for 
30% of acute myeloid leukemia (AML). AML patients with 
FLT3‑ITD frequently develop resistance to FLT3 inhibitors. 
It has been shown that STAT5 can be activated by mislocal-
ized and phosphorylated FLT3‑ITD, which in turn promotes 
expression of Pim‑1 kinase (34‑36). Recently, our previous 
study revealed that Pim‑1 participates in a positive‑feedback 
loop regulating FLT3‑ITD expression and stability through 
phosphorylation at Ser‑935. Therefore, Pim‑1 kinase facili-
tates abnormal signaling of FLT3‑ITD in cancer cells, and 
enhancing their drug resistance (37). Combined inhibition 
of Pim‑1 and FLT3 increases cancer cell sensitivity to either 
drug alone (37).

4. Pim‑1 as a senescence regulator

Cellular senescence can be described as an arrest of the 
proliferative abilities of the cell, so that the cell loses the 
ability to divide  (38). Certain characteristics of senescent 
cells are heterochromatin formation and telomere shortening. 
It has long been believed that cellular senescence serves as a 
protective mechanism against cancer (39). The exact role of 
oncogene‑induced senescence in cancer is largely unknown. 
Recently, it was revealed that Pim‑1 expression is elevated 
upon aging in human fibroblast cells and Pim‑1 inhibition 
reduces replicative and oncogene‑induced senescence (40). 
In addition, it has been shown that expression of Pim‑1 is 
activated through IL‑6/STAT3 signaling, thus Pim‑1 mediates 
cytokine‑induced cellular senescence (40). Notably, it was 
found that Pim‑1 kinase has the potential to rejuvenate human 
cardiac progenitor cells  (hCPCs). According to obtained 
results, hCPC cell lines transduced with lentivirus for overex-
pressing Pim‑1 were less susceptible to replicative senescence, 
had longer telomeres and increased abilities to proliferate (41). 
These two contradictive findings provide a foundation to 
further study in this area. Results that state participation of 
Pim‑1 in premature aging via heterochromatin formation 
make the kinase a potential target in activating cellular senes-
cence through cytokines in cancer therapy. By contrast, the 
observations showing that Pim‑1 kinase has the capacity to 
rejuvenate hCPC also makes Pim‑1 a potential target in deac-
tivating the rejuvenation process in tumor cells. Furthermore, 
recent new findings show that nuclear localized Pim‑1 (refer 
to Pim‑1S) can promote senescence bypass of hCPC stem 
cells through downregulation of p16 and p53 (42). The new 
finding that mitochondrial localization of Pim‑1 (mito‑Pim1) 
increases hCPC cell survival and decreases apoptosis further 
supports that distinct cellular localization of Pim‑1 fine‑tunes 
the signaling networks for differential functions, such as 

maintaining mitochondrial integrity, energy and survival 
for senescence bypass. However, which factors determine 
the functional switch of Pim‑1 in differential genetic context 
should be further investigated.

5. Pim‑1 as a prostate cancer biomarker

Elevation of Pim‑1 kinase has been found in numerous 
types of cancer, in particular male hormone‑related prostate 
cancer (2). Tissue microarray analysis using Pim‑1S (17) and 
Pim‑1L antibodies (5) showed that Pim‑1S and Pim‑1L are 
largely upregulated only in the advanced, but not in the early, 
stage of prostate cancer. Thus, Pim‑1S and Pim‑1L can be 
used as a biomarker for prostate cancer. However, these two 
isoforms of Pim‑1 show distinct roles in hormone‑regulated 
signaling. Androgen receptor (AR) has a central role in pros-
tate cancer progression. Pim‑1S and Pim‑1L phosphorylate 
AR at different sites. Pim‑1S and Pim‑1L can interact with 
and phosphorylate AR at Ser‑213, but only Pim‑1L can phos-
phorylate AR at Thr‑850 (43). Pim‑1S and Pim‑1L mediated 
phosphorylation results in recruiting the distinct ubiquitin E3 
ligase. Our previous study showed that Pim‑1S‑induced Ser‑213 
phosphorylation of AR promotes AR degradation through 
ubiquitin  E3 ligase Mdm2 depending on cell cycle  (43). 
However, Pim‑1L‑induced Thr‑850 phosphorylation stabilizes 
AR through ubiquitin E3 ligase RNF6 and enhances AR target 
gene transcription under low‑androgen conditions (43). More 
data showed that Pim‑1S and Pim‑1L can promote prostate 
cancer cell growth even in low‑androgen conditions (43). These 
data suggest that Pim‑1 has pivotal roles in hormone refractory 
prostate cancer. Similar findings were reported that Pim‑1S 
phosphorylates AR at Ser‑213 and inhibits AR target genes, 
such as tumor suppressor genes NKX3.1  (44,45). However, 
Pim‑1S‑mediated phosphorylation at Ser‑213 also inhibits AR 
target gene PSA. This paradox between oncogenic Pim‑1S and 
PSA most likely is caused by ubiquitination and degradation of 
AR following phosphorylation at Ser‑213. Pim‑1L may switch 
AR target genes by RNF6, as RNF6 regulates AR target genes 
specificity (46).

6. Pim‑1 as an epigenetic dynamics regulator

Phosphorylation of heterochromatin protein 1γ at Ser‑93 by 
Pim‑1 promotes its binding with histone H3K9me3, which 
leads to heterochromatin formation and suppression of gene 
transcriptions responsible for proliferation  (40). Another 
epigenetic regulation of Pim‑1 involves oncogenic transcrip-
tion factor c‑Myc (Myc). One study showed that Pim‑1 can 
directly regulate Myc transcriptional activity  (47). Pim‑1 
overexpression alone is not enough to transform benign 
prostate RWPE1 cell line to malignantly form (48). However, 
Pim‑1 overexpression combined with Myc leads to develop-
ment of the advanced form of prostate carcinoma (49). Recent 
studies have shown that Pim‑1 associates with Myc and can 
thereby regulate the epigenetic dynamics of oncogene expres-
sion. Pim‑1‑mediated co‑regulation consists of ~20% of the 
Myc‑regulated genes. Pim‑1 phosphorylates histone H3 at 
Ser‑10 (H3S10) on the nucleosome at the MYC‑binding sites. 
This suggests that Pim‑1 regulates transcriptional activation, 
which contributes to Myc‑transforming activity (50). Thus, 
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Pim‑1 is a transcriptional cofactor of Myc that phosphorylates 
the chromatin at Myc‑binding sites and regulates epigenetic 
dynamics for cellular transformation.

7. Pim‑1 as a metastatic target

Given the elevation of Pim‑1 in highly advanced stages of 
cancers, in addition to the important role of Pim‑1 in cell 
survival and proliferation, whether Pim‑1 directly regu-
lates cancer cell invasion to induce metastasis remains to 
be elucidated. Recently, one study showed Pim‑1 overex-
pressing prostate cancer PC3 cells induced tumor invasion to 
prostate‑draining lymph nodes, but also into the lungs to form 
metastases in a Xenograft model (51). Mechanistically, Pim‑1 
phosphorylates CXCR4 at Ser‑339 for cell migration and 
invasion (51). The epithelial‑mesenchymal transition (EMT) 
is known to be one of the mechanisms of metastasis. Pim‑1 
is expressed at high levels in the stroma of human prostate 
cancer samples  (52). Inducible overexpression of Pim‑1 in 
immortalized prostate fibroblast cell lines increased the 
differentiation of myofibroblasts and transition of cancer‑asso-
ciated fibroblasts (52). Pim‑1 in fibroblasts upregulated the 
expression levels of secreted proteins of extracellular matrix 
collagen  1A1, chemokine CCL5, and the platelet‑derived 
growth factor receptors (52). In addition, Pim‑1 upregulated 
c‑MET, a well‑known EMT inducer through translational 
regulation (53). Pim‑1 regulated MET through the control of 
the translation of c‑MET by regulating the phosphorylation 
of eukaryotic initiation factor 4B (eIF4B) at Ser‑406 (53). As 
c‑MET kinase is an inducer of cancer metastasis, these find-
ings suggest Pim‑1 may have a significant potential in cancer 
metastasis by crosstalk with multiple signaling.

8. Pim‑1 as a crosstalk signaling pathway target

Targeting Pim‑1 in prostate cancer would be promising for 
preventing the cancer recurrence caused by kinase inhibitor 
drugs in clinical treatment. For example, the PI3K/AKT pathway 
is a strong signaling pathway that promotes cell proliferation 
and survival in numerous types of cancer including prostate 
cancer. However, a single treatment targeting this pathway has 
been a significant obstacle for therapy efficiency. One of the 
mechanisms is that Akt inhibition can induce upregulation of 
numerous receptor tyrosine kinases, such as c‑MET, HER2 and 
insulin receptor growth factor in prostate cancer cells through 
Pim‑1 mediated regulation of translation in a cap‑independent 
manner, but internal ribosome entry‑dependent manner (53). 
Furthermore, Pim‑1 inhibition by inhibitor SMI‑4a represses 
the resistance to Akt inhibitor drugs (54).

Numerous Pim‑1 inhibitors, such as flavonoid inhibi-
tors  (55), isoxazolo[3,4‑b]quinoline‑3,4(1H,9H)‑dione  (56), 
ETP‑45299 (57), SGI‑1776 (58) and AZD1208 (59), have been 
developed. They can be classified as the first generation inhibitor 
(SGI‑1776) and the next generation inhibitor (AZD1208) (60). 
SGI‑1776 as the first generation inhibitor is able to inhibit 
Pim‑1S, Pim‑1L, Pim‑2 and Pim‑3 kinases and has high anti-
tumor activity in vivo as well as in vitro (61). The antitumor 
effect of SGI‑1776 could bypass Pim‑1 as the inhibitor also 
suppresses the activity of FLT3 (61). Additionally, it has been 
shown that SGI‑1776 can inhibit cyclin D1, MCL and Myc (61). 

SGI‑1776 could inhibit Pgp‑mediated efflux of drugs through 
inhibiting Pim‑1 kinase, thus reversing the drug‑resistant abili-
ties of tumor cells (27). In addition, this inhibitor decreased 
the surface expression of Pgp and BCRP in K562/ABCG2 
and K562/Pgp cell lines and enhanced apoptosis of Pgp and 
BCRP overexpressing cells (27). One of the new generation 
inhibitors is TP‑3654, which can also inhibit all isoforms of 
Pim kinase (Pim‑1, Pim‑2 and Pim‑3), but with a small effect 
on FLT3 and hERG (62). This is significant as phase I clinical 
trials of SGI‑1776 revealed its cardiotoxicity due to suppres-
sion of the cardiac potassium channel (61). The next promising 
second generation Pim kinase inhibitor is AZD1208, which can 
inhibit Pim‑1S and Pim‑1L (59). AZD1208 was found to inhibit 
phosphorylation of BAD at Ser‑112, which is intermediary of 
pro‑survival activity of Pim‑1 kinase (63). According to micro-
array and RNA‑sequencing studies, it has been shown that 
treatment with AZD1208 causes inhibition of the Myc pathway 
in vitro with acutely treated cancer cells and in vivo with tumor 
cells that were treated chronically (64). Additionally, it has been 
shown that AZD1208 inhibits the tumor suppressor signaling 
pathway mediated by p53, which is stabilized by overexpression 
of Pim‑1 kinase (65). The fact that AZD1208 can suppress the 
p53 pathway and that Pim‑1 kinase can be activated by hypoxia 
and radiation to enhance survival of cancer cells suggests the 
benefit of the combination of radiation therapy and AZD1208 
treatment, as prostate cancer cells are more resistant to radia-
tion upon hypoxic response (66). Recent studies have shown in 
Myc‑mediated castration‑resistant cancerous cells, AZD1208 
increases radiation efficiency during prostate cancer treat-
ment (59). Therefore, AZD1208 as a promising Pim‑1 inhibitor 
can be used for combinational therapy in advanced prostate 
cancer. Furthermore, the selective inhibitor of the Pim family, 
DHPCC‑9, decreases the metastatic ability of prostate tumors to 
the lung (51). Recently it has been shown that CD25, a stem cell 
marker and prognostic marker of survival or relapse in AML, 
can also be used as a prognostic marker for Pim‑1 inhibitor drug 
response (67). This data implicates the potential of the Pim‑1 
inhibitor in targeting cancer stem cells, linking the mechanisms 
and functions of Pim‑1 in drug resistance and cancer stem 
cells. However, whether Pim‑1 inhibitors can directly target 
cancer stem cells requires further investigation. In conclusion, 
increasing evidence has shown that Pim‑1 is emerging as a diag-
nostic marker and drug target in numerous types of cancer (68).

9. Conclusion

Pim‑1 kinase is a critical enzyme that is involved in cell 
growth, differentiation, survival, apoptosis, senescence and 
drug resistance. Interaction of Pim‑1 with different proteins 
and association with various signaling pathways make it one 
of the important antitumor targets. Numerous Pim‑1 inhibitors 
are under preclinical studies or clinical trials, such as P9 mono-
clonal antibodies and AZD1208. An increasing number of new 
Pim‑1 inhibitors are still developing and undergoing preclinical 
investigations. These efforts further suggest that Pim‑1 is 
believed to be a master drug target in numerous types of cancer. 
In addition, the fact that Pim‑1 kinase inhibits transcriptional 
activity of FOXP3 makes it an even more noteworthy antitumor 
target, as it is thought that T regs are responsible for decreasing 
the efficiency of cancer immunotherapies. Furthermore, Pim‑1 
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can promote drug resistance, a trait of cancer stem cells, 
through interaction with and phosphorylation of Pgp, BCRP 
and FLT3‑ITD, which links Pim‑1 as a promising targeted 
therapy in cancer stem cells (69). The new findings of the role 
of Pim‑1 in cellular senescence in differential cancer microen-
vironment (70) allow us to be cautious for cancer treatment in 
individual therapy. As Pim‑1 is a potential biomarker of pros-
tate cancer and crosstalk with numerous signaling pathways, 
targeting Pim‑1 in immunotherapy and personalized therapy 
would be of great significance for the next generation of preci-
sion medicine in cancer.
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