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Abstract. Vaccines are considered to be one of the most 
cost‑effective life‑saving interventions in human history. 
The body's inflammatory response to vaccines has both 
desired effects (immune response), undesired effects [(acute 
phase reactions (APRs)] and trade‑offs. Trade‑offs are 
more potent immune responses which may be potentially 
difficult to separate from potent acute phase reactions. 
Thus, studying acute phase proteins (APPs) during vaccina-
tion may aid our understanding of APRs and homeostatic 
changes which can result from inflammatory responses. 
Depending on the severity of the response in humans, these 
reactions can be classified as major, moderate or minor. In 
this review, types of APPs and their importance in vaccina-
tion will be discussed.
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1. Introduction

The association between the strength of the acute phase 
response and vaccination efficacy is of key importance to 

human and veterinary medicine. Proteins which are expressed 
in the acute phase are potential biomarkers for the diagnosis 
of inflammatory disease, for example, acute phase proteins 
(APPs) are indicators of successful organ transplantation 
and can be used to predict the ameliorative effect of cancer 
therapy (1,2). APPs are primarily synthesized in hepatocytes. 
The acute phase response is a spontaneous reaction triggered 
by disrupted homeostasis resulting from environmental distur-
bances (3). Acute phase reactions (APRs) usually stabilize 
quickly, after recovering from a disruption to homeostasis 
within a few days to weeks; however, APPs expression levels 
often remain elevated in long lasting infection and chronic 
disease states, such as cancer (4‑6).

Classification of acute phase reactions is dependent on 
the change in APP concentration: A 10‑100‑fold elevation is 
considered major; a 2‑10‑fold elevation is considered moderate; 
and a less than 2‑fold elevation is considered minor  (7). 
The APPs elevated in a major APR include C-reactive 
protein (CRP) and serum amyloid (SA); the APPs elevated 
in a moderate APR include α1‑acid glycoprotein (AGP); and 
the APPs elevated in a minor APR include fibrinogen, hapto-
globin (Hp) and ceruloplasmin (Cp) (8).

In response to infection, the liver synthesizes a large 
quantity of APPs (8). There are 8 proteins which are overex-
pressed in APRs denoted as ‘positive’ APPs, including Hp, SA, 
fibrinogen, Cp, AGP, α‑1 antitrypsin (AAT), lactoferrin (Lf) 
and CRP. Similarly, there are a number of ‘negative’ APPs the 
expression levels of which are reduced, including albumin, 
transferrin and transthyretin (8).

The APP is elicited by cytokines, including those 
functioning as positive and negative growth factors and 
cytokines with proinf lammatory or anti‑inf lammatory 
activity. Positive or negative growth factor cytokines 
involved include: Interleukin (IL)‑2; IL‑3; IL‑4; IL‑7; 
IL‑10; IL‑11; IL‑12; and granulocyte‑macrophage colony 
stimulating factor (9). Proinflammatory cytokines involved 
include tumour necrosis factor (TNF)‑α/β; IL‑1α/β; IL‑6; 
IFN‑α/γ; IL‑8; and macrophage inhibitory protein‑1  (6). 
Cytokines involved in the anti‑inf lammatory response 
include: IL‑1 receptor antagonists; soluble IL‑1 receptors; 
IL‑1 binding protein; and TNF‑α binding protein. Table I 
shows acute phase reactants associated, inf lammatory 
cytokines and references.
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2. Inflammation and APPs

The acute inflammatory reaction is an essential immune 
response required for vaccinations to initiate temporary simu-
lated immunity. The innate response is the first branch of the 
immune system stimulated by invading pathogens, should they 
cross the body's anatomical and chemical barriers. The innate 
immune system is also activated by APP synthesis as these 
molecules mediate inflammation.

After vaccination, pro‑inflammatory cells are activated and 
produce cytokines which diffuse into the extracellular fluid 
and circulate in the blood. In response, the liver upregulates 
the synthesis of APPs, preceding the specific immune reaction 
within a few hours. Monitoring APP expression levels may be 
an indicator of efficacy of a vaccine in stimulating the innate 
immune system and may be a useful biomarker in the future 
development of vaccines.

3. Types of APPs

C-reactive protein (CRP). CRP is a member of the short 
evolutionarily conserved pentraxin group of plasma proteins, 
consisting of 5 identical non‑glycosylated peptide subunits 
which link to form a cyclic pentamer structure (10,11). CRP is 
produced as a result of pro‑inflammatory cytokine signaling 
primarily mediated by neutrophils and monocytes. CRP 
concentration is elevated during infection or inflammation 
as part of the innate immune response and alteration of CRP 
plasma concentration is dependent on the rate of CRP synthesis 
and the severity of infection  (10). The half‑life of CRP in 
plasma is ~19 h and is cleared by the urinary system (10,12) 
and CRP stimulates immune cells by binding to Fcγ receptors 
(FcγR) on leukocytes (monocytes, neutrophils and cells of a 
myeloid lineage) and increases production of IgG, linking the 
innate and adaptive immune systems (13). CRP‑FcγR binding 
also facilitates the anti‑inflammatory responses (14).

It has been proposed that CRP may have value as a 
diagnostic marker for active inflammation and infection. 
IL‑6, IL‑1 and TNF‑α trigger hepatocyte mediated synthesis 
of CRP in response to active infection or inflammation. 
Subsequently, CRP binding to bacterial polysaccharides in 
the presence of calcium activates downstream compliment 
pathways and ultimately results in phagocytosis  (15,16); 
however, the primary function of CRP is to recognize 
foreign pathogens and components of damaged cells through 
binding to phosphocholine (PC), a terminal head group of 
the lipoteichoic acid which is a component of the cell walls 
of certain Gram positive bacteria and a component of the 
mammalian cell membrane. In normal healthy cells, phos-
phocholine is not exposed however, when cells are damaged 
or are dying, CRP is able to bind to the PC present on the 
cell membrane  (17). In addition, CRP promotes comple-
ment fixation, binding to phagocytized cells and triggers the 
elimination of cells targeted by the inflammatory response 
pathway (17‑19). There is a direct association between the 
elevated levels of CRP and the risk of coronary artery and 
cerebrovascular thrombosis interfering with endothelial 
nitric oxide (NO) bioavailability, by decreasing endothelial 
NO synthase expression and increasing the production of 
reactive oxygen species (20,21).

In the USA, CRP levels in patients tend to be higher 
in females compared with males in healthy humans (2.7 
vs. 1.6 mg/l, respectively) and these levels are exacerbated with 
age, for example one study reported CRP levels of 1.4 mg/l 
between the ages of 20‑29 vs. 2.7 mg/l in those over 80 (22). 
Meanwhile, ethnicity has little effect on CRP levels (22).

When CRP was studied in non‑human species, rabbits 
served as the primary experimental model due to their suscep-
tibility to infection and the similarity of pathogenesis to what 
is observed in humans, rabbit CRP behaves more similar to 
human CRP compared with rat CRP in terms of its dynamic 
changes during acute phase response (13,23).

Haptoglobin (Hp). Hp is a glycoprotein synthesized in the liver 
and present in serum at concentrations of 3‑30 µmol/l. Serum 
levels of Hp increase 3‑8‑fold in response to inflammation and 
injury and Hp is eliminated from the plasma in 3‑5 days (24,25). 
Hp binds free hemoglobin (Hb) for detoxification and Hb is 
highly toxic due to its heme group which mediates the genera-
tion of hydroxyl radicals (24). The elimination of Hb and its iron 
constituent occurs by the formation of a noncovalent Hb‑Hp 
complex which is released into the blood by intravascular 
hemolysis and subsequently removed by reticuloendothelial 
receptor‑mediated endocytosis and tissue macrophages via 
interacting with CD163 cell‑surface receptor (26). Free hemo-
globin is very toxic to the human body due to its ability to bind 
NO which is a key modulator of vascular tone (27). Hp mediated 
NO binding prevents NO activity in vascular smooth muscle 
cells resulting in changes to vasomotor constriction, potentially 
causing endothelial damage which may contribute to cardiovas-
cular disease, and pulmonary and systemic hypertension (28).

Hp has several functions in the cellular and humoral aspects 
of the innate and adaptive immune systems (24), including 
inhibiting prostaglandin production, enhancing the antibody 
production, leukocyte recruitment and migration, modulation 
of cytokine release, which are the regulatory mediators secreted 
by T cells and other immunoactive cells following an injury, 
infection and tissue repair (29‑31). Conditions associated with 
a reduction or absence of Hp, such as hypohaptoglobinemia 
or ahaptoglobinemia, result in severe allergies involving the 
skin, lungs and anaphylaxis (29‑31). Hp also suppresses T cell 
proliferation, including Th2 and Th4 cytokines synthesis (32), 
and cyclooxygenase and lipoxygenase activity, thus contrib-
uting to the regulation of the immune response to potentially 
damaging inflammation or infection (33).

Serum amyloid A (SAA). SAA is an APP and a apolipoprotein, 
which binds to high‑density lipoproteins (HDL) in the plasma, 
During an APR, the fraction of apoA1 in HDL falls while that 
of SAA rises, becoming the predominant apolipoprotein (apo 
SAA), exceeding apo A‑1 (the major apolipoprotein of native 
HDL) and reduces the effectiveness of HDL recycling choles-
terol to the liver during inflammation (34). SAA displaces 
apolipoprotein A‑1 from HDL, and becomes the predominant 
circulating HDL3 apolipoprotein mediating reverse cholesterol 
transport and inhibiting the LDL oxidation. LDL oxidation 
promotes foam cell formation, and thus, this reduces the risk 
of atherosclerosis  (27). SAA is found at concentrations of 
40 ug/ml in healthy males in the UK (34). During acute infec-
tion, SAA plasma levels are elevated by up to 1,000‑fold (34). 
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SAA has been shown to be an efficient carrier of retinol during 
an infection, while retinol is important for promotion and 
maturation of innate immune cells, expression of retinol trans-
porter is reduced during infection, providing insight into the 
underlying mechanisms involved in the redirection of retinol 
in response to infection compensating to the markedly reduced 
levels of serum retinol binding protein transporter following a 
microbial infection (35). During inflammation, macrophages 
and monocytes present at the inflammatory site release cyto-
kines, such as IL‑6, initiating the induction of SAA synthesis 
and release of SAA by the liver into the plasma (16).

SAA is a conserved protein which circulates in the plasma 
and is able to bind to surface ligands of microbial pathogens in a 
calcium‑dependent manner (36). SAA binds to microbial poly-
saccharides, which are part of the cell wall of gram‑negative 
bacteria, and matrix components via carbohydrate determi-
nant links, including heparin, 6‑phosphorylated mannose, 
3‑sulfated saccharides and the 4,6‑cyclic pyruvate acetal of 
galactose (37,38). SAA binds to apoptotic and necrotic cells 
facilitating its clearance in vivo (39).

Most species possess two main acute phase apo SAA 
isoforms of hepatic origin in their serum, SAA1 and SAA2 
are APPs with the ability to form amyloid proteins in vivo and 
SAA1 and SAA2 represent multiple allelic forms which are 
alternatively expressed by three different genes in humans (40). 
SAA4 is constitutively expressed across a number of tissues 
and has been shown to form amyloid when mutated  (41). 
SAA1a is frequently present in amyloid fibrils and is possibly 
the most amyloidogenic form of SAA1. Although the majority 
of SAA1 and SAA2 are found bound to HDL, they are only a 
minor protein component in a healthy state. This classification 

helps differentiate between regulated acute phase reactants of 
hepatic origin or constitutive proteins (42).

Fibrinogen. Fibrinogen is an important protein involved in 
blood clotting, homeostasis, inflammation and tissue repair. 
Fibrinogen is a 340‑kDa soluble glycoprotein found in the 
blood, and a major component of fibrin which is synthesized 
in the liver. In healthy adults, fibrinogen plasma levels are 
~150‑400 mg/dl, and during infection, expression levels of 
fibrinogen can increase by ≤20‑fold (43). At a site of injury, 
fibrinogen facilitates aggregation of activated platelets through 
binding to glycoprotein IIb/IIIa cell surface receptor (43), trig-
gering platelet adhesion, and subsequently, thrombin cleaves 
fibrinogen into fibrin monomers which polymerize to form a 
clot (44,45) and are stabilized by activated factor XIII (46). 
The strength of the fibrin clot is influenced by the concentra-
tion of fibrinogen (44). A structural scaffold is formed by 
the fibrin clot onto which leukocyte platelets and fibroblasts 
adhere and infiltrate the injury site. Extravascular plasma 
generates thrombin which ultimately leads to deposition of 
fibrinogen (47), therefore injury, infection and auto‑immunity 
are associated with extravascular fibrinogen (48,49).

Ceruloplasmin (Cp). Cp is a major copper transport protein 
present in the plasma and is produced by the hepatic paren-
chymal cells (50). Human Cp (hCp) is a 132 kDa α2‑globulin 
which can bind up to six copper ions, and serum concentra-
tion levels in healthy individuals are ~0.2‑0.6 mg/ml, which 
increases >2‑fold during inflammation (51). Overall, ~95% of 
serum copper is bound to Cp (52). hCp has ferroxidase activity 
and functions in the mobilization of iron for transport by 

Table I. Acute phase reactants, associated inflammatory cytokines and references.

A, Positive acute phase reactants

Author, year	 Reactant	 Associated cytokines	 (Refs.)

Sharpe‑Timms et al, 2010	 Haptoglobin	 IL1β, IL‑6, IL‑8, TNF‑α,	 (9)
He et al, 2006	 Serum amyloid	 IL1β, IL‑6, IL‑8, IL‑12, IL‑23	 (143)
Lu et al, 2015	 Fibrinogen	 IL‑6, IL‑6, TNF‑α, IL‑1β, IL‑8	 (144)
Lazzaro et al, 2014	 Ceruloplasmin	 IL‑1β, TNF‑α, IFN‑l	 (145)
Martinez Cordero et al, 2008	 α‑1 acid glycoprotein	 TNF‑α, IL‑1, IL‑6	 (146)
de Serres and Blanco, 2014	 α‑1 antitrypsin	 TNF‑α, IL‑6, IL‑1β, IL‑8, IL‑32	 (147)
Haversen et al, 2002	 Lactoferrin	 TNF‑α, IL‑6, IL‑1β, IL‑8	 (148)
Du Clos, 2000	 C‑reactive protein	 IL‑6, IL‑1a, IL‑1β, TNF‑α	 (149)

B, Negative acute phase reactants

Author, year	 Reactant	 Associated cytokines	 (Refs.)

Spadaro et al, 2014	 Albumin	 IL‑6, TNF‑α	 (150)
Feelders et al, 1998	 Transferrin	 IL‑6, TNF‑α, IL1	 (151)
Bartalena et al, 1992	 Transthyretin	 IL‑6, IL‑1, TNF‑α	 (152)

IL, interleukin; TNF, tumor necrosis factor. 
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oxidizing Fe2+ to the less reactive Fe3+ and incorporating Fe3+ 
into apotransferrin (53). This oxidation prevents the formation 
of reactive oxygen species and toxic products of iron (54,55). 
Therefore, Cp has an essential role in iron metabolism and 
the elimination of free iron (56‑58). Cp is an APR and Cp 
expression levels increase during infection, stress and inflam-
mation  (59). Cp also possesses antioxidant properties and 
functions in the removal of free radicals such as H2O2 during 
wound healing, collagen formation and the maturation phase 
which brings about extracellular matrix remodeling and reso-
lution of the granulation of tissue (60,61). However, studies 
have shown that Cp can also act as a pro‑oxidant by promoting 
the oxidation of low density lipoprotein (62,63).

α1‑acid glycoprotein (AGP). AGP is an APR which stabilizes 
the biological activity of plasminogen activator inhibitor‑1, 
preventing platelet aggregation (64), and is present in the plasma 
of healthy humans at concentrations of 0.6‑1.2 mg/ml (65). 
However, these expression levels increase 2‑7‑fold during an 
APR (53,66). AGP expression in the liver is induced by acti-
vation of IL‑1β, IL‑6 and TNF‑α, and is inhibited by growth 
hormone (67,68). AGP is considered a natural anti‑inflamma-
tory agent with respect to its anti‑neutrophilic activity. For 
example, AGP modulates neutrophil chemotactic migration and 
superoxide generation in a concentration‑dependent manner 
assisting in the re‑establishment of systemic homeostasis 
following an infection (59,69,70). AGP also inhibits monocyte 
chemotaxis and cellular leakage caused by histamine and 
bradykinin levels which are reduced by AGP, and additionally, 
AGP reduced the synthesis of soluble TNFα receptor leading 
to an inhibition of the inflammatory process (70). Meanwhile, 
AGP induces IL‑1 receptor antagonism expressed on periph-
eral blood monocytes (71‑73).

α‑1 antitrypsin (AAT). AAT is the most abundant serine 
protease inhibitor in human blood  (65). AAT is present in 
bodily fluids, including the saliva, tears, urine, bile and circu-
lating blood. AAT consists of a single polypeptide chain made 
of 394 amino acid residues containing one free cysteine residue 
and three asparagine‑linked carbohydrate side‑chains. AAT 
aids in the elimination of acute inflammation, tissue proteo-
lytic damage by neutrophil elastase in the lungs and inhibits 
lipopolysaccharides and the release of inflammatory mediators 
such as TNF‑α and IL‑1β (65,74,75). AAT is synthesized in the 
liver but is also produced by other blood cells such as mono-
cytes, macrophages, pulmonary alveolar cells and by intestinal 
and corneal epithelium (65,74,75). Synthesis of AAT occurs 
at a rate of 34 mg/kg and the protein clearance rate (half‑life) 
is 3‑5 days. As a result, high plasma concentrations of AAT 
usually range from 0.9‑2 mg/ml in healthy individuals (76‑80). 
During an inflammatory response, local AAT synthesis results 
in the invasion of inflammatory cells followed by an acute rise 
in AAT expression levels by as much as 11‑fold (81).

Lactoferrin (Lf). Lf is a multifunctional 80 kDa glycoprotein 
which binds to Fe3+ and an innate immunity factor present 
in a range of secretory fluids, including mammalian exocrine 
breast milk, saliva, tears and mucosal secretions (82). Lf is 
also present in mucosal surfaces and specific leukocyte gran-
ules and it can be found in feces following release from fecal 

leukocytes (83). Abundant antimicrobial peptides and APPs are 
present in airway surface liquid. Lf is a bacteriostatic protein 
which chelates iron from Fe3+ (82). Iron is required for bacte-
rial cell division and for the development of biofilms, which 
are distinct, matrix‑encased communities of bacteria, and the 
biofilm is protects against host defense mechanisms and anti-
biotics (84). LF chelation of iron occurs at a higher affinity in 
an acidic medium (85), therefore Lf binding to iron results in 
the prevention of growth and proliferation of iron dependent 
bacteria, donating this iron to beneficial bacteria, such as lactic 
acid bacteria (Lactobacillales) serves as a barrier against colo-
nization of pathogenic bacteria on the intestinal surface thus 
preventing infection (84). Lf also has several other physiological 
roles, including stimulation of cell growth and proliferation, 
differentiation, development of immune competence, anti-
fungal, antibacterial and antiviral activities, antioxidant and 
anti‑inflammatory activity and anti‑tumor activity  (82,85). 
Recombinant Lf (TLf) produced in the filamentous fungus, 
Aspergillus awamori, possesses the same biological activities 
as human lactoferrin and has been reported to lower mortality 
in adults with severe blood poisoning (86) and to have anti-
cancer activities (87,88). TLf and human lactoferrin (hLf) have 
been reported to display changes in immunogenicity and aller-
genicity in mice (89). Alteration of Lf glycosylation in human 
milk collected at different time points during lactation resulted 
in changes in bacterial binding to epithelial cells (89). Thus, 
hLf from milk and TLf may display different bioactivities. hLF 
is resistant to gastrointestinal tract digestion and may there-
fore play an important role in intestinal development during 
the prenatal period and infancy (90,91). More importantly, 
Lf promotes maturation of dendritic cells and therefore may 
function as a natural defense in neonates against bacterial inva-
sion (90) as neonates primarily rely on innate immunity (92).

Albumin. Human serum albumin (HSA) is a major plasma 
protein synthesized by the liver functioning in the trans-
port of several endogenous ligands, including fatty acids, 
ions, thyroxine, bilirubin; and exogenous ligands as well as 
drugs, such as warfarin, diazepam, phenytoin, non‑estradiol 
anti‑inflammatory drugs and digoxin  (93). Albumin is a 
member of the family of α‑fetoprotein, afamin (also called 
α‑albumin) and vitamin D binding protein (94,95) and these 
proteins tend to be homologous, that is, all members of the 
albuminoid superfamily of proteins are suitably capable of 
ligand binding and transport, as they possess highly conserved 
intron/exon organization (95). HSA is the key regulator of fluid 
distribution between somatic regions of the body and body 
compartment (96). HSA functions to maintain plasma osmotic 
pressure and its synthesis is regulated by changes in blood 
osmotic pressure (94,97,98).

HSA is an important biomarker of inflammation in a 
number of diseases, including cancer, diabetes, rheumatoid 
arthritis, ischemia and obesity (99‑101). Low expression levels 
of HSA may indicate malnutrition and decrease in hemoglobin 
levels  (99). HSA serves as a valuable cell culture medium 
and was an additive in the production of pharmaceutical 
vaccines (102). HSA has also been used for decades in the 
management of a range of medical and surgical problems, such 
as for the treatment of acute hypovolemia (surgical blood loss, 
trauma, or hemorrhage) due to its effect on osmotic pressure 
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providing an oncotic gradient favoring the entry of water 
from the interstitial space and thus reversing the movement of 
leaked fluids back into blood vessels (103,104).

Transferrin (Tf). Tf is a member of the iron‑binding glyco-
protein family, including lactoferrin (present in intracellular 
compartments and secretions, such as milk), melanotrans-
ferrin (present on melanoma cells) and ovotransferrin (present 
in egg white of multiple species), and the metal and coordi-
nating anion sites are well conserved in all vertebrates (93). 
Each of these iron‑binding glycoproteins features a single 
iron‑binding site and are monomeric proteins 76‑81 kDa in 
weight. Tf consists of two structurally similar lobes, namely, 
the C‑ and the N‑lobes. Plasma transferrin provides body 
tissues with iron, whereas the remaining transferrin are 
produced locally and transport iron to restricted regions, 
including the testes and brain, as these two sites are relatively 
inaccessible to proteins in the general circulation due to the 
presence of highly specialized barriers (104). Liver hepato-
cytes are the primary sites of Tf production; however, Tf is 
also synthesized in other organs to a lesser extent, including 
the choroid plexus (105). The primary function of Tf is to 
transport iron from absorption centers in the duodenum and 
in white blood cell macrophages to all tissues (105). Tf also 
functions as a constituent of the innate immune system where 
its levels decrease during inflammation. The Tf receptor is a 
receptor for the IgA1 class of antibodies (106). Tf serves an 
important role in the somatic regions where erythropoiesis and 
active cell division occur (106). Iron‑bound Tf is internalized 
by cells expressing specific Tf receptors by receptor‑mediated 
endocytosis thus contributing to an environment with low free 
iron capable of inhibiting bacterial growth and multiplication 
during infection (96).

Transthyretin (TTR). TTR (previously referred to as preal-
bumin) is a negative APR synthesized and excreted by the 
kidneys and gastrointestinal tract with a half‑life of 1.9 days 
and expression levels of TTR decrease significantly during 
inflammation which promotes an APR (96,107). TTR is also 
synthesized in the choroid plexus and forms a complex mole-
cule with retinol binding protein allowing retinol and thyroxine 
transport (107). This process is mediated by pro‑inflammatory 
cytokines, such as IL‑6, IL‑1a and TNFα (108). It has been 
reported that TTR functions as a biomarker for predicting 

poor short‑term outcome and disease severity in patients with 
burn injuries (109,110) or respiratory failure (111), and was 
strongly correlated with the score of sequential organ failure 
assessment, and low levels of TTR were associated with an 
increase in mortality (112,113). Patients with low preoperative 
TTR levels (<0.2 g/l) are prone to increased risk of postop-
erative infections and need longer mechanical ventilation after 
heart surgery (113).

4. Vaccines and APP

Upon vaccination and introduction of antigens into the body, 
macrophages and dendritic cells are stimulated, producing 
inflammatory cytokines and triggering APP synthesis in hepa-
tocytes, which function nonspecifically as part of the innate 
immune system detecting pathogens or vaccination compo-
nents (114). Vaccines have been shown to cause inflammatory 
responses which has a direct impact on the maintenance of 
homeostasis, particularly in the kidney and the liver (115). 
Disruption of homeostasis during APR can negatively affect 
the host (3,7,16), for example, plasma levels of a number of 
microminerals, including iron, may change as they are taken up 
by hepatocytes and other cell types (7). As the APR increases 
the products of metabolism will also increase (4). The increase 
in the plasma proteins during APR affects the concentration of 
the free form of any drug administered at the time of stress, 
leading to drug dispersal, and variations in plasma protein 
concentrations during the acute phase response may result in 
the plasma levels of available drugs to decrease considerably 
whereas the total drug concentration (free and bound) will be 
only slightly affected, and thus the effective dose will be altered 
due to fluctuations in serum protein levels and decreased serum 
albumin expression levels (116,117). Individual variation in the 
expression levels of APRs in response to inflammatory stimuli, 
such as vaccines, has been previously reported in cattle (118), 
mice (119) and humans (120). This difference may be due 
to individual differences in inflammatory genes (120,121). 
Obesity can alter vaccination responses in mice, wherein 
the obesity was associated with decreased antibody produc-
tion and ultimately reduced the efficacy of an influenza 
vaccine (122). Furthermore, decreased influenza‑specific anti-
body levels and B‑cell function in response to vaccination has 
also been linked to obesity in humans (123). Administration 
of vaccines containing foreign particles into the body triggers 

Table II. Acute phase reactants associated with vaccines.

Author, year	 Vaccine	 Acute phase reactant	 (Refs.)

Louagie et al, 1993	 Hepatitis B	 Haptoglobin	 (153)
Borthwick et al, 2018	 Human immunodeficiency virus core DNA 	 Serum amyloid	 (154)
Creech et al, 2017	 S. aureus capsular polysaccharides	 Fibrinogen	 (155)
Blom et al, 1979	 Typhoid. AB.‑cholera 	 Ceruloplasmin, α‑1 glycoprotein	 (156)
Naylor et al, 2015	 Rotavirus and poliovirus	 α‑1 antitrypsin	 (157)
Hwang et al, 2005	 Bacillus Calmette‑Guerin	 Lactoferrin 	 (158)
Carty et al, 2006	 Influenza	 C‑reactive protein, transthyretin	 (159)
Patel and Shah, 2015	 H1N1 influenza 	 Albumin	 (160)
Bos et al, 2016	 Neisseria gonorrhoeae	 Transferrin 	 (161)
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local inflammation due to an immediate change in cytokine 
production, which triggers the clinical symptoms associated 
with vaccination. Overall, a reduced response to vaccination 
is a likely indication of an unregulated inflammatory system 
which may lead to increased risk of disease as the majority 
of vaccines protect against infection through induction of a 
B‑cell antibody response (124).

Pro‑inflammatory cytokine IL‑6 is an important regulator 
of inflammation and is one of the primary cytokines which 
stimulate APP synthesis in hepatocytes (125‑127). IL‑6 func-
tions in several processes during inflammation, including 
chemokine production, development of B‑cells and dendritic 
cells, secretion and maturation of antibodies, T‑cell matura-
tion, as well as linking the innate and adaptive immune 
responses (128,129). An acute spike of anti‑IL‑6 was observed 
5 days post vaccination in a small study of yellow fever vaccine, 
indicating its potential role predict vaccine‑induced protec-
tion (130). Kurtz et al (131) studied the protective mechanisms 
of IL‑6 against a Francisella tularensis live vaccine adminis-
tered intradermally or intranasally to IL‑6 knockout (KO) and 
wild type mice. The group reported a decline in SSA and Hp 
in IL‑6 KO mice compared with wild type controls, indicating 
the importance of IL‑6 in protection against infection.

In humans, the efficacy of the influenza vaccination has 
been invaluable. In one study, CRP expression levels increased 
by 36%, further increasing to 40% above baseline at day 3, 
before returning to the normal levels by day  7 following 
vaccination (132). In a study of patients >65 years old, CRP 
plasma concentrations spiked at 2 days post vaccination with 
influenza and pneumococcal vaccines as well as a combina-
tion of the two (133). Another study investigating the influenza 
vaccine showed that CRP expression levels post‑vaccination 
were dependent on the dose of vaccine (134). Table II show 
acute phase reactants associated with vaccines.

5. Effect of adjuvant systems on APP

Adjuvants are compounds joined with other constituents in 
vaccine formulations (135) where multiple immunostimulants 
are combined with adjuvant systems to enhance antibody 
production and adaptive immune responses to vaccina-
tion (136). Adjuvant components regulate and improve the 
specificity of the immune system, thus aiming to optimize 
the immune response to vaccination (136). To date, there have 
been at least six novel adjuvants approved for use as vaccine 
components in the last 20 years (135,136). Adjuvant systems 
can be useful when strong T cell responses are required to 
protect against complex pathogens formed of several different 
types of antigens, chronic infections, or in immunocompro-
mised populations such as the elderly or neonates (137,138). A 
previous study on the effects of adjuvants in rabbits indicated 
that CRP and fibrinogen expression levels were increased 
following the administration of adjuvant systems AS01, AS03, 
AS15 and DTPw (139). The increase in CRP levels increased 
9‑26‑fold after injection of AS01, AS03, or AS15. Comparable 
effects have also been shown in humans (140). However, the use 
of other adjuvants such as aluminum phosphate and aluminum 
hydroxide did not affect CRP expression levels in the elderly 
or in the young following a diphtheria‑tetanus‑poliomy-
elitis‑typhoid vaccine (141), influenza vaccine (142) or yellow 

fever vaccine (120,130). Overall, these studies indicate the 
efficacy of these adjuvant systems in stimulating the adaptive 
immune response.

6. Conclusion

APRs a group of 11 key proteins, eight of which are positive 
and three are negative proteins. During infection, the liver 
hepatocytes respond by producing a large number of APRs. 
Upon vaccination, an acute‑phase protein reaction may develop 
which is a part of the innate immune system. Vaccination has 
also been demonstrated to cause an inflammatory response, 
which results in homeostatic changes including changes in 
renal and liver functions. Changes in APR expression levels in 
response to an inflammatory stimulus may vary across individ-
uals due to genetic, nutritional, age, or other health‑associated 
factors. The health and nutritional status of the individual 
may affect the response to a given vaccine due to the inflam-
matory condition. For example, IL‑6 (an inflammatory key 
mediator and regulator of the majority of APRs) functions 
in the acute‑phase protein response in the innate and adap-
tive branches of the immune system. CRP, as a prototypical 
APP, is synthesized in response to pro‑inflammatory cytokine 
signals and CRP expression levels increase in innate immune 
responses to infection or to injury. Further investigations into 
the relationships between vaccination and the effect on CRP 
and other APRs may help clarify the mechanisms by which 
beneficial and harmful inflammatory responses affect health 
and influence the immune response.
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