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Abstract. As one member of the heterogeneous ribonucleopro‑
tein (hnRNP) family, scaffold attachment factor A (SAF‑A) 
or hnRNP U, is an abundant nuclear protein. With RNA 
and DNA binding activities, SAF‑A has multiple functions. 
The present review focused on the biological structure and 
different roles of SAF‑A and SAF‑A‑related diseases. It was 
found that SAF‑A maintains the higher‑order chromatin 
organization via RNA and DNA, and regulates transcription 
at the initiation and elongation stages. In addition to regulating 
pre‑mRNA splicing, mRNA transportation and stabilization, 
SAF‑A participates in double‑strand breaks and mitosis repair. 

Therefore, the aberrant expression and mutation of SAF‑A 
results in tumors and impaired neurodevelopment. Moreover, 
SAF‑A may play a role in the anti‑virus system. In conclu‑
sion, due to its essential biological functions, SAF‑A may 
be a valuable clinical prediction factor or therapeutic target. 
Since the role of SAF‑A in tumors and viral infections may 
be controversial, more animal experiments and clinical assays 
are needed.
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1. Introduction

Scaffold attachment factor A (SAF‑A), or heterogeneous 
ribonucleoprotein U (hnRNP U), belonging to the hnRNP 
subfamily, is an abundant component of nuclear matrix and 
hnRNP particles (1).

The human SAF‑A gene, located on chromosome 1 q44, 
has 2 transcript variants, in which variant 2 lacks a segment in 
the coding region compared with variant 1 (2). Consequently, 
this causes two isoforms with different lengths, yet the same 
reading frame.

Since human SAF‑A (Uniprot code: Q00839) contains 
825 amino acids, its predicted molecular weight is ~90 kDa. 
But, due to modifications such as phosphorylation, SAF‑A is 
usually observed to be ~120 kDa. SAF‑A is widely expressed 
in various organs or tissues, such as bone marrow, lymphoid 
tissues, brain, heart, lung and kidney (https://www.proteinatlas.
org/ENSG00000153187‑HNRNPU). Due to its functional 
domains, SAF‑A binds to both DNA (such as scaffold‑attached 
region DNA) and RNA (such as chromatin‑associated RNAs) 
and plays essential roles in several cellular processes such 
as chromatin structure regulation (3), transcription (4) and 
mitosis  (5). The present review summarized the structure, 
multiple functions and clinical significance of SAF‑A.
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2. Materials and methods

The present narrative review was performed by screening the 
Pubmed (https://pubmed.ncbi.nlm.nih.gov/), Medline (https://
www.nlm.nih.gov/medline/medline_overview.html) and 
Google Scholar (https://scholar.google.com/) databases using 
the key words: ‘hnRNPU’, ‘SAF‑A’, ‘chromatin organization’, 
‘transcription’, ‘RNA metabolism’, ‘DNA repair’, ‘mitosis’, 
‘tumor’, ‘neurodevelopment’, and ‘anti‑virus’. Published 
between 2014 and 2024, the English‑written articles available 
with a full text were mainly used, and these articles were 
involved in animal and human studies.

3. The structure of SAF‑A

SAF‑A contains three domains: N‑terminal DNA‑binding, 
C‑terminal RNA binding and middle domain (6‑8) (Fig. 1). 
Notably, the DNA‑binding domain SAF/Acinus/PIAS (SAP) 
is important for interaction with matrix association region 
(MAR) in chromatin  (6). Containing a cluster of argi‑
nine/glycine‑rich (RGG) repeats, the C‑terminus of SAF‑A is 
necessary for binding to inactive X chromosome regions and 
chromatin‑associated RNAs (8). The middle domain of SAF‑A, 
including an SPla and RYanodine receptor and a nucleotide 
triphosphate hydrolase region (9,10), mediates its interaction 
with different proteins, such as forkhead box N3 (11), Wilms' 
tumor suppressor gene 1 (9) and severe fever with thrombocy‑
topenia syndrome virus nucleocapsid protein (12).

4. Functions of SAF‑A

SAF‑A participates in chromatin organization. In the eukary‑
otic cell nucleus, chromatin forms 3‑D structures at multiple 
levels, including domains, loops, A and B compartments 
(relating to active and inactive chromatin, respectively), topo‑
logically associating domains (TADs) and territories (13‑16).

In early research, SAF‑A was found to form large 
aggregates in vitro and induce DNA loops to gather around 
them (17) (Fig. 2A). When SAF‑A is depleted in mouse hepa‑
tocytes, lamina‑associated domains increase, compartments 
switch, TAD boundary strengthens, and chromatin loop inten‑
sities decrease, demonstrating that SAF‑A plays a vital role in 
maintaining the higher‑order chromatin organization (18).

Further studies demonstrated that SAF‑A regulates chro‑
matin structure via RNA. Jiao et al (19) found that SAF‑A binds 
to histone acetyltransferases p300 in cancer cells (19). Facilitated 
by heparanase (HPSE) enhancer RNA, the SAF‑A‑p300 
complex is enriched on the super‑enhancer, consequently leading 
to chromatin looping between the HPSE promoter and the 
super‑enhancer. Consistently interacting with chromatin‑asso‑
ciated RNAs, SAF‑A forms oligomerization that induces 
de‑compaction of large‑scale human interphase chromatin 
structure (8) (Fig. 2A). In this way, SAF‑A maintains genomic 
stability (8). When human monocyte THP‑1 cells are infected 
by vesicular stomatitis virus (VSV), SAF‑A interacts with viral 
infection‑induced RNAs, mediating the openness and activa‑
tion of antiviral immune genes (20). Puvvula and Moon (10) 
treated cancer cells with cell‑penetrating peptides derived from 
SAF‑A, and found that the SAP‑derived peptide rather than the 
RGG‑derived one promotes chromatin compaction in HCT116 

(colorectal), T47D (breast) and UMUC3 (bladder) cancer cells. 
Based on these observations, RNA is proposed to be essential 
for SAF‑A‑induced chromatin de‑compaction.

Besides RNA, DNA was also reported to be necessary 
for SAF‑A to regulate chromatin structure. In the study of 
Kolpa et al (21), similar to the C280 SAF‑A deletion mutant 
(only containing RGG domain), the expression of ∆RGG 
(containing DNA‑binding domain) and G29A mutants (in 
lack of DNA‑binding ability) was able to release C0T‑1 RNA 
from chromatin, resulting in chromatin condensation. Despite 
this, their regulatory mechanism is different. ∆RGG SAF‑A 
mutant mainly replaced endogenous SAF‑A from chromatin, 
while the G29A mutant still combined with C0T‑1 RNA and 
could not bind to chromatin (21). Therefore, to some degree, 
SAF‑A may play a role in bridging C0T‑1 RNA and chromatin 
to regulate chromatin architecture. Depending on the SAP 
domain, SAF‑A was also found to combine with MARs and 
the pericentromere tandem repeats in chromocenters (6,22). 
Therefore, it was hypothesized that SAF‑A tethers MARs to 
the chromocenter to organize nuclear architecture (1).

SAF‑A regulates transcription. In eukaryotic cells, transcrip‑
tion of protein‑coding genes, including initiation, elongation 
and termination phases, contains numerous regulatory proteins 
affecting either the RNA polymerase II (Pol II) machinery or 
chromatin structure (23‑26).

Previous studies have indicated that SAF‑A is involved in 
initial transcriptional regulation. Actin in the nucleus regulates 
transcription by remodeling chromatin, regulating transcription 
factor (TF) location, or binding to RNA polymerase (27‑30). 
Through extracellular vesicles derived from embryonic stem 
cells, SAF‑A is transferred into human coronary artery endo‑
thelial cells to combine with actin. The SAF‑A‑actin complex 
leads to enhanced RNA Pol II phosphorylation and its level on 
vascular endothelial growth factor (VEGF) promoter, upregu‑
lating VEGF expression (4) (Fig. 2B). When the SAF‑A‑actin 
complex is disrupted by H19 [a long non‑coding (lnc) RNA], 
the phosphorylation of the Pol II C‑terminal domain (CTD) is 
inhibited, and consequently, Pol II‑mediated transcription is 
prohibited (31). Additionally, SAF‑A was found to associate 
with elements within the promoter regions. In Sertoli cells, 
SAF‑A has been identified to bind directly to the promoter 
regions of Sox8 and Sox9, thereby enhancing their expres‑
sion (32) (Fig. 2B). Similarly, IL21‑anti‑sense RNA 1 interacting 
with SAF‑A binds to the IL21 promoter, which is essential for 
regulating IL21 transcription (33). Research on embryonic stem 
cells also revealed that not only does SAF‑A bind to the Oct4 
proximal promoter, but it also interacts with endogenous Pol II. 
And depletion of SAF‑A impairs Oct4 expression (34).

In previous studies, SAF‑A appeared to have two‑way 
adjusting effects on transcription elongation mediated by Pol 
II. According to the study of Obrdlik et al (35), SAF‑A, actin 
and p300/CBP‑associated factor (PCAF) were associated 
with the phosphorylated Pol II CTD; and the actin‑SAF‑A 
interaction assisted Pol II transcription elongation depending 
on PCAF (Fig. 2B). On the contrary, in another study, SAF‑A 
inhibited Pol II elongation. Through the middle domain, 
SAF‑A was sufficient to combine with Pol II and repressed 
TF IIH‑mediated Pol II CTD phosphorylation, which inhibited 
Pol II elongation (36) (Fig. 2B).



BIOMEDICAL REPORTS  20:  88,  2024 3

SAF‑A plays roles in RNA metabolism. SAF‑A has also been 
implicated in various aspects of RNA metabolism, including 
normal and alternative pre‑mRNA splicing and RNA trans‑
porting (Fig. 2C).

Ye et  al  (37) inactivated SAF‑A expression in murine 
hearts and found that compared with wild type, SAF‑A mutant 
in hearts results in extensive intron retention and cassette skip‑
ping. In contrast to the wild‑type samples, mouse cortices with 

SAF‑A mutations showed 850 differentially spliced genes, and 
the gene splicing included exon skipping, an alternative 3' or 5' 
splice site and intron retention (38).

Then, by what mechanism does SAF‑A regulate 
pre‑mRNA splicing? Xiao et al (39) found that SAF‑A binds 
to all the small nuclear RNAs essential for splicing major and 
minor intron classes and regulates U2 small nuclear ribonu‑
cleoprotein maturation and Cajal body morphology. However, 

Figure 1. Structural schematic diagram of SAF‑A. The N‑terminal SAP motif is necessary for DNA binding. Dependent on the SPRY domain, SAF‑A binds 
to other proteins. The NTP hydrolase domain of SAF‑A mediates ATP binding and hydrolysis. In the C‑terminus, the RGG region combines with RNA and 
ssDNA (8,10). SAF‑A, scaffold attachment factor A; SAP, SAF/Acinus/PIAS; SPRY, SPla and RYanodine receptor; NTP, nucleotide triphosphate; RGG, 
arginine/glycine‑rich.

Figure 2. Functions of SAF‑A. (A) Binding to RNA, SAF‑A promotes DNA loop formation (17). Through consistent interaction with chromatin‑associated 
RNAs, SAF‑A forms oligomers to induce de‑compaction of the large‑scale human interphase chromatin structure (8). (B) During transcription initiation, 
SAF‑A‑actin interaction enhances RNA Pol II phosphorylation (4). Besides, SAF‑A binds to elements within promoter regions to promote transcription (32). 
During the elongation of transcription, SAF‑A interacts with RNA pol II to modulate transcription (35,36). (C) SAF‑A participates in the selective splicing of 
pre‑mRNA and stabilizes mRNA during their transportation (39). (D) Interacting with NEIL1 and NEIL2, SAF‑A participates in oxidized base lesions through 
DG repair (50). When double‑strand breaks are induced, SAF‑A is recruited and phosphorylated at Ser59 to promote NHEJ repair mediated by Ku, DNA‑PKcs 
and XRCC4 (54,55,58). (E) During mitotic metaphase, SAF‑A stabilizes not only the interaction between kinetochore and kinetochore‑MT but also CENP‑W 
through binding to it (61,62). The image was generated using the online platform https://www.biorender.com. SAF‑A, scaffold attachment factor A; RNA Pol 
II, RNA polymerase II; NEIL, Nei endonuclease VIII‑like; NHEJ, non‑homologous end joining; DNA‑PKcs, DNA‑dependent protein kinase catalytic subunit; 
XRCC4, X‑ray repair cross‑complementing protein 4; MT, microtubule; CENP‑W, centromere protein W.
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Vu et al (40) demonstrated the different splicing regulatory 
mechanisms of SAF‑A. Competed with hnRNP L (a splicing 
repressor) to combine with an RNA cis‑element in the exon 3 
of caspase‑9, SAF‑A promotes the exon 3, 4, 5, 6 cassette 
inclusion in the mature caspase‑9 mRNA, determining the 
preferential expression of caspase‑9a rather than caspase‑9b.

It has been identified that SAF‑A is responsible for 
transporting and stabilizing mRNA via directly binding to 
it. Zhao et al (41) found that SAF‑A binds to tumor necrosis 
factor α (TNF‑α), IL‑6 and IL‑1β mRNAs and that down‑
regulation of SAF‑A expression in macrophages induces 
the decreased half‑life of these cytokine mRNAs. Besides, 
Toll‑like receptor signaling in macrophages leads to SAF‑A 
translocation from nuclear to cytoplasm (41). During this trans‑
location, SAF‑A is proposed to stabilize pro‑inflammatory 
cytokine mRNAs (41). In agreement with the aforementioned 
study, SAF‑A was found to bind to the 3' untranslated region of 
TNF α mRNA to stabilize it and specifically enhance TNF α 
expression (42). However, other studies suggested that SAF‑A 
stabilizes mRNA depending on other molecules. Pan et al (43) 
found that interaction between LIM domains‑containing 1 
antisense RNA 1 (LIMD1‑AS1) and SAF‑A is essential for 
stabilizing LIMD1 mRNA in non‑small cell lung cancer. 
Furthermore, Lu et al (44) reported that following lipopoly‑
saccharide stimulation in human intestinal epithelial cells, 
functional intergenic repeating RNA element cooperating with 
SAF‑A may regulate the stabilization of vascular cell adhesion 
protein 1 and IL12p40 mRNAs through targeting the AU‑rich 
elements of these mRNAs.

SAF‑A repairs both oxidized lesions and double‑strand breaks 
(DSBs). In cells, ionizing radiation (IR) and reactive oxygen 
species may result in clustered oxidized bases and DSBs that 
are also induced by V(D)J recombination (45‑47). Oxidized 
base lesions in the human genome are repaired via DNA 
glycosylase (DG) repair, also known as base excision repair 
(BER). Repair enzymes, including Nei endonuclease VIII‑like 
(NEIL) and certain non‑repair proteins, such as SAF‑A, 
initiate this process (48,49). In previous studies, SAF‑A was 
demonstrated to interact directly with NEIL1 and stimulate 
NEIL1‑mediated repair of oxidative base damage (48,49). In 
addition to NEIL1, SAF‑A combines with NEIL2, enhancing 
NEIL2‑initiated transcribed gene‑specific repair of oxidized 
bases (50) (Fig. 2D).

However, BER of bi‑stranded oxidized bases can lead to 
additional DSBs, causing loss of DNA fragments. This may 
be avoided if DSBs are repaired through non‑homologous 
end joining (NHEJ) mediated by Ku, DNA‑dependent 
protein kinase catalytic subunit (DNA‑PKcs), X‑ray repair 
cross‑complementing protein 4 (XRCC4), DNA ligase IV, 
and cernunnos‑XRCC4‑like factor complex, preceding 
BER (51‑53). In response to irradiation‑induced DSBs, SAF‑A 
is rapidly recruited to DNA damage sites  (54) (Fig.  2D). 
Besides, DSBs cause phosphorylated SAF‑A at Ser59, which 
is exclusively dependent on DNA‑PK (55,56) (Fig. 2D). In 
NHEJ‑deficient cells treated with IR or clastogenic drugs, 
the extent and duration of SAF‑A phosphorylation at Ser59 
increase  (56), which suggests that phosphorylated SAF‑A 
may be a biomarker for testing the capacity of the cells to 
repair DSBs by NHEJ. A previous study showed that SAF‑A 

phosphorylation at Ser59 is related to transient NEIL1 
release from chromatin and BER prevention. Then, due to 
dephosphorylation, SAF‑A reactivates BER by relieving DG 
inhibition (57). These results suggested that DSB repair by 
NHEJ or BER is partly determined by whether SAF‑A is 
phosphorylated. However, a recent study found that increased 
SAF‑A stabilizes or recruits NHEJ factors via liquid‑liquid 
phase separation, including Ku80, 53BP1, DNA‑PKcs and 
the shieldin complex at DSBs during antibody class‑switch 
recombination (58) (Fig. 2D). The finding supplies SAF‑A may 
balance between BER and NHEL through complex mecha‑
nisms.

SAF‑A takes part in mitosis. During mitosis, kineto‑
chore‑microtubule (MT) attachment and chromosome 
congression at the spindle equator is essential to accurate 
chromosome segregation (59,60). Interestingly, SAF‑A binds 
to not only Aurora‑A and targeting protein for Xklp2 (TPX2) 
at spindle MTs, but also nucleolin at the outer kinetochore, 
whereby SAF‑A stabilizes kinetochore‑MT attachment (61) 
(Fig. 2E). Via non‑coding RNA, SAF‑A interacts with centro‑
mere protein W (CENP‑W, an inner centromere component 
crucial for forming a functional kinetochore complex). 
Notably, SAF‑A‑CENP‑W interaction increases their stability, 
and they co‑localize at the MT‑kinetochore interface during 
mitosis (62) (Fig. 2E). Furthermore, SAF‑A depletion in cells 
leads to delayed mitosis, unsuccessful chromosome alignment, 
and spindle assembly (61).

In addition, SAF‑A is dynamically phosphorylated during 
mitosis, and in human cells, phosphorylation at serine 2 
(S2), S3, S4, S59, S66 and S270 is related to mitosis (63‑65). 
Douglas et al (66) found SAF‑A is phosphorylated at S59 by 
polo‑like kinase 1 instead of DNA‑PK and is dephosphory‑
lated by protein phosphatase 2A. Mutations of SAF‑A S59 
in cells lead to aberrant mitoses, including polylobed nuclei, 
delayed passage, misaligned and lagging chromosomes (66). 
However, the regulatory mechanism of phosphorylated SAF‑A 
on mitosis remains elusive.

5. Clinical significance of SAF‑A

SAF‑A is associated with tumor development and resistance 
to chemotherapy. Previous studies revealed that SAF‑A 
mainly promotes proliferation (67‑71), aggressiveness (19) and 
migration (71) of tumors (Table I). SAF‑A is overexpressed in 
hepatocellular carcinoma or acute myeloid leukemia, and the 
proliferation of these tumors is inhibited in vitro and in vivo 
due to SAF‑A downregulation (68‑70). Further studies demon‑
strated that SAF‑A promotes tumor proliferation through 
combining with lncRNAs, such as promoter of CDKN1A 
antisense DNA damage activated RNA (PANDA) in esopha‑
geal squamous cell carcinoma and hepatocyte nuclear factor 
4 alpha‑AS1 in neuroblastoma (67,69). Jiao et al (19) also used 
several cancer cell lines and found that SAF‑A interaction 
with HPSE enhancer RNA enhances HPSE expression and 
activity, which promotes tumorigenesis and aggressiveness. In 
the research of Han et al (71), SAF‑A was found to interact 
with dead box helicase 5 (DDX5) to promote the prolifera‑
tion and migration of triple‑negative breast cancer. On the one 
hand, the SAF‑A‑DDX5 complex leads to alternative splicing 
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(AS) of minichromosome maintenance protein 10 pre‑mRNA 
and subsequent activation of Wnt/β‑catenin signaling. On 
the other hand, the complex enhances the expression of LIM 
domain only protein 4 by locating in its transcriptional start 
sites, activating PI3K‑Akt‑mTOR signaling (71). Regulating 
AS, SAF‑A is involved in the pathogenesis of gastric cancer 
and renal clear cell carcinoma  (72,73). Zhang  et  al  (74) 
found that SAF‑A also binds to P‑element‑induced wimpy 
testis‑interacting RNA‑1742 (piRNA‑1742) to stabilize USP8 
mRNA and promote the progression of renal cell carcinoma. 
Through interaction with a family with sequence similarity 
171 B (an independent prognostic factor for bladder cancer 
progression), SAF‑A regulates the CCL2 pathway to facilitate 
M2 macrophage polarization in the tumor microenvironment, 
thereby promoting bladder cancer development (75).

Further studies have demonstrated a correlation between 
SAF‑A and resistance to chemotherapy. Shi et al (76) discov‑
ered that the knockout of SAF‑A in human T24 cells enhances 
bladder cancer susceptibility to cisplatin via inhibition of cell 
proliferation and impairment of cellular invasion and migration 
capabilities. In the research of Wang et al (77), the knockdown 
of SAF‑A increases selinexor sensitivities of multiple myeloma 
(MM) cells in vitro and in mouse models and MM patients 
with relatively low SAF‑A expression response to selinexor.

However, a few studies demonstrated that SAF‑A might 
suppress tumor cell proliferation and enhance sensitivities to 
chemotherapy. Pan et al (43) reported that LIMD1 inhibits 
proliferation and promotes apoptosis in non‑small cell lung 

cancer cells, and SAF‑A interacts with lncRNA LIMD1‑AS1 
to stabilize LIMD1 mRNA. Puvvula and Moon (10) dealt 
with various tumor cells with SAF‑A RGG‑ or SAP‑derived 
peptides. Depending on different mechanisms, these 
peptides suppress breast, bladder, colorectal and prostate 
cancer cell proliferation. The SAF‑A RGG‑derived peptides 
mainly alter SAF‑A splicing and binding targets, while the 
SAP‑derived regulates global epigenetic marks to induce 
DNA damage reaction and cell death (10). Li et al (78) also 
identified that lncRNA SFTA1 could augment cisplatin 
sensitivity in treating lung squamous cell carcinoma by 
upregulating SAF‑A.

The contradictory effects of SAF‑A on tumors may result 
from different tumor types or test methods. Therefore, more 
animal and clinical experiments are needed to identify its 
functions further.

SAF‑A participates in proviral or antiviral response. Previous 
research revealed that SAF‑A plays dual roles in antiviral 
response. Through the N‑terminal fragment (aa1‑86), SAF‑A 
targets the 3' long terminal repeat of human immunodeficiency 
virus type 1 mRNA and blocks viral replication in cells (79). 
Furtherly, in both in vitro and in vivo animal experiments, 
SAF‑A has been reported to be associated with the initiation 
of innate immunity against viruses, including severe fever 
with thrombocytopenia syndrome virus, VSV, and herpes 
simplex virus type 1 by recognizing nuclear or cytoplasmic 
viral RNA (12,20,80).

Table I. The roles of SAF‑A in various cancers.

System	 Cancer type	 The roles of SAF‑A	 (Refs.)

Digestive	 Gastric carcinoma	 SAF‑A is involved in the development of gastric cancer 	 (72)
		  by regulating alternative splicing	
	 HCC	 SAF‑A promotes HCC development by enhancing CDK2	 (68)
		  transcription	
	 Esophageal squamous cancer	 Long non‑coding RNA PANDA binds to SAF‑A to 	 (67)
		  promote tumor proliferation through the CyclinD1/2‑	
		  Cyclin E1 and Bcl‑2 pathways	
Respiratory	 Non‑small cell lung cancer, lung	 SAF‑A can inhibit tumor proliferation and enhance the 	 (43,78)
	 squamous cell carcinoma	 sensitivity of lung squamous cell carcinoma to cisplatin	
Urinary system	 Bladder carcinoma	 SAF‑A can interact with family with sequence similarity 	 (75,76)
		  171 B, an independent predictor of bladder cancer 	
		  progression, and regulate the CCL2 pathway to promote 	
		  cancer progression. Knocking down SAF‑A can increase 	
		  the sensitivity of bladder cancer to cisplatin	
	 Renal cell carcinoma	 A combination of SAF‑A and piRNA‑1742 stabilizes 	 (73,74)
		  USP8 mRNA or regulates alternative splicing to promote	
		  the progression of renal cell carcinoma	
Reproductive system	 Triple‑negative breast cancer	 Interaction between SAF‑A and dead box helicase 5 	 (71)
		  promotes the proliferation and migration of triple‑	
		  negative breast cancer	
Blood system	  MM	 Knockdown of SAF‑A increases MM sensitivity to 	 (77)
		  selinexor	

SAF‑A, scaffold attachment factor A; HCC, hepatocellular carcinoma; MM, multiple myeloma.
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However, Gupta et al (81) found that SAF‑A is associated 
with the leader RNA of VSV and co‑localizes with the virus 
in the cytoplasm of infected cells, implying that SAF‑A may 
contribute to the life cycle of VSV and its pathogenesis. In 
recent studies, SAF‑A was found to negatively regulate innate 
immune responses against infectious bursal disease viruses 
and porcine epidemic diarrhea virus and induce immune 
escape of these viruses (82,83).

Therefore, the diverse roles of SAF‑A played in these 
experiments may be due to different viruses or hosts, and 
more animal experiments are needed to determine the roles of 
SAF‑A in antiviral immunity.

SAF‑A links to neurodevelopment. Caliebe et al  (84) first 
revealed that patients with a chromosome deletion 0.440 
Mb in region 1q44 bearing SAF‑A suffer from seizures and 
speech delay. Similarly, Depienne et al  (85) reported that 
1q43q44 containing SAF‑A microdeletion leads to intel‑
lectual disability (ID) and epilepsy. Employing molecular 
genetic testing, a series of pathogenic SAF‑A mutants have 
been identified to be associated with developmental delay and 
neurodevelopmental disorder showing severe ID with delay 
of speech and language, early‑onset seizures, and autistic 
features as well (85‑90). Despite this, the regulatory mecha‑
nism of SAF‑A on neurodevelopment remains elusive. In a 
recent study, deletion of SAF‑A in cultured neural progenitors 
and murine brains resulted in varied gene expression and AS, 
apoptosis of neural cells and abnormalities in neuronal migra‑
tion, suggesting that SAF‑A is essential for the development 
of cortex (38).

6. Conclusions

SAF‑A is one of the main components of the nuclear matrix. 
Capable of binding both DNA and RNA, SAF‑A has crucial 
functions in regulating chromatin architecture, transcrip‑
tion, RNA metabolism, DNA repair and mitosis. Humans or 
mice with SAF‑A deficiency or mutants display embryonic 
death (91), lethal cardiomyopathy (37) and neurodevelopmental 
disorders (38,90). Therefore, SAF‑A may be a valuable predic‑
tion factor or therapeutic target. Besides, SAF‑A has been 
observed to be related to anti‑infection and tumor progression, 
though these functions are controversial. Because of this, more 
animal experiments and clinical assays are needed.
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