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Abstract. The mammalian mitochondrial electron transport 
chain (ETC) includes complexes I‑IV, as well as the electron 
transporters ubiquinone and cytochrome c. There are two elec-
tron transport pathways in the ETC: Complex I/III/IV, with 
NADH as the substrate and complex II/III/IV, with succinic 
acid as the substrate. The electron flow is coupled with the 
generation of a proton gradient across the inner membrane 
and the energy accumulated in the proton gradient is used 
by complex V (ATP synthase) to produce ATP. The first part 
of this review briefly introduces the structure and function 
of complexes I‑IV and ATP synthase, including the specific 
electron transfer process in each complex. Some electrons are 
directly transferred to O2 to generate reactive oxygen species 
(ROS) in the ETC. The second part of this review discusses 
the sites of ROS generation in each ETC complex, including 
sites IF and IQ in complex I, site IIF in complex II and site IIIQo 
in complex III, and the physiological and pathological regula-
tion of ROS. As signaling molecules, ROS play an important 
role in cell proliferation, hypoxia adaptation and cell fate 
determination, but excessive ROS can cause irreversible cell 
damage and even cell death. The occurrence and development 
of a number of diseases are closely related to ROS overpro-
duction. Finally, proton leak and uncoupling proteins (UCPS) 
are discussed. Proton leak consists of basal proton leak and 
induced proton leak. Induced proton leak is precisely regu-
lated and induced by UCPs. A total of five UCPs (UCP1‑5) 
have been identified in mammalian cells. UCP1 mainly plays a 
role in the maintenance of body temperature in a cold environ-
ment through non‑shivering thermogenesis. The core role of 
UCP2‑5 is to reduce oxidative stress under certain conditions, 

therefore exerting cytoprotective effects. All diseases involving 
oxidative stress are associated with UCPs.
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1. Introduction

The chemiosmotic theory proposed by Peter Mitchell (1) in 
1961 states that the transfer of electrons derived from substrate 
oxidation and ATP synthesis are coupled in the mitochondrial 
ETC, but that does not mean that the transfer of electrons 
is 100% efficient. Due to the existence of electron leak and 
proton leak, not all electrons in the ETC can be transferred 
to the final electron acceptor O2 and the energy released by 
the transferred electrons cannot be completely coupled with 
ATP generation. However, both the ROS generated by electron 
leak and the UCPs implicated in proton leak play an important 
role in the physiology and pathology of cells. Therefore, it is 
extremely important to understand the process of electron 
transfer in the ETC and the mechanism of electron leak and 
proton leak.

In this review, the basic components of the ETC are 
discussed and the process of electron transfer in each complex, 
including the structure, composition and function of each 
complex is reviewed. In addition, the ROS generation sites in 
the ETC are summarized and the ROS regulation is mentioned. 
Moreover, proton leak is emphatically introduced, including 
the structure, tissue distribution, functions and regulatory 
factors of UCPs. The diseases implicated in ROS or UCPs are 
simply summarized.

2. Mitochondrial ETC and ATP synthase

The ETC, which is composed of transmembrane protein 
complexes  (I‑IV) and the freely mobile electron transfer 
carriers ubiquinone and cytochrome c, exists in the folded 
inner membranes called cristae (Fig. 1). The complexes must 
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be assembled into a specifically configured supercomplex to 
function properly (2,3). These assembled components together 
with F1F0ATP synthase (namely, complex  V) become the 
basis of ATP production during oxidative phosphorylation 
(OXPHOS). To better understand the whole process of how 
electron transportation produces ATP via the ETC, it is neces-
sary to know the ultrastructure and function of the individual 
complexes.

Complex I (CI). CI, also called NADH‑ubiquinone oxidoreduc-
tase, is the largest multisubunit enzyme complex in the ETC. 
The key role of CI is to transfer electrons from matrix NADH 
to ubiquinone, as the name implies. A number of studies have 
reported the structure of the bacterial mitochondrial CI using 
X‑ray crystallography at a nearly atomic resolution  (4,5). 
Mitochondria from the Bos taurus heart have been regarded as 
the best model for human CI (6‑9). These studies demonstrate 
that the L‑shaped eukaryotic CI contains two domains: The 
membrane arm embedded in the inner membranes and the 
matrix arm protruding into the matrix. The two domains are 
mainly composed of 14 core subunits that are conserved from 
bacterial CI and are the core of the enzymatic reaction. There 
are 45 clearly identified proteins that participate in the forma-
tion of the core subunits. The matrix arm contains seven core 
subunits (NDUFS1, NDUFS2, NDUFS3, NDUFS7, NDUFS8, 
NDUFV1 and NDUFV 2) that contain the following cofac-
tors: A flavin mononucleotide (FMN) molecule; 7‑9 FeS 
clusters [including the (2Fe‑2S)N1b, (4Fe‑4S)N3, (4Fe‑4S)N4, 
(4Fe‑4S)N5, (4Fe‑4S)N6a/b and (4Fe‑4S)N2 clusters] (4,10); and 
the final electron accepting iron‑sulfur cluster (N2 cluster), 
which was recently found to deliver electrons to ubiquinone 
binding sites (11). The membrane arm contains seven hydro-
phobic subunits (ND1‑6 and ND4L), all of which are encoded 
by the mitochondrial genome. In addition, a large number of 
accessory subunits are arranged around the core subunits. The 
assembly of these modules has been reviewed in detail else-
where (12). An FMN bound at the cusp of the matrix arm could 
form FMNH2 by accepting a pair of electrons derived from 
matrix NADH, which is primarily produced by the tricarbox-
ylic acid (Krebs) cycle that continuously occurs in the matrix. 
These interactions also mean that electrons go into the ETC 
and are then passed to ubiquinone via a chain of iron‑sulfur 
clusters arranged from low to high potential [the transfer order 
was reported as FMN→N3→N1b→N4→N5→N6a→N6b→
N2 (4)]. The ubiquinone binding site is located at the junction 
of the membrane arm and matrix arm, in which ubiquinone 
(CoQ) is reduced to ubiquinol (QH2). Then, the conformational 
changes of the N2 cluster induce the formation of a proton 
translocation channel by the ND1, ND3, ND6 and ND4L 
subunits near the CoQ binding site (13). The energy released 
by the transfer of a pair of electrons from NADH to CoQ in CI 
probably (not definitively) induce the pumping of four protons 
from the matrix into the intermembrane space (14‑17). Several 
hypotheses exist in current research: Ohnishi (18) proposed 
a hypothesis that two protons are indirectly pumped out in a 
conformation‑coupled manner and that the other two protons 
are directly pumped out by the induction of ubiquinone redox. 
Sazanov and Hinchliffe (4) hypothesized that three protons are 
indirectly pumped via three antiporter homologs, and the final 
proton is shifted in an unclear way. In addition, Tan et al (14) 

speculated that the conformation changes and the density of 
water molecules in the trans‑membrane domain determine the 
proton translocation in CI. However, how the energy trans-
fers from the redox reaction to proton translocation are still 
unknown.

Complex II (CII). CII, namely, succinate dehydrogenase, is a 
component of the Krebs cycle as well as the ETC, serving as 
a link between metabolism and OXPHOS (19,20). As a part 
of the Krebs cycle, CII catalyzes the oxidation of succinate 
to fumarate. CII is another entry point for electrons and 
donates them from succinate to CoQ via FeS clusters, similar 
to CI. CII consists of four subunits (20). A total of two of the 
subunits, the membrane‑anchor proteins CybL and CybS, 
are hydrophobic, anchor the complex to the inner membrane, 
and contain the CoQ binding site. The other two subunits 
are located on the matrix side of the inner membrane and 
contain the binding site of the substrate succinate, three FeS 
clusters [(2Fe‑2S), (4Fe‑4S) and (3Fe‑4S)], and a flavoprotein 
covalently bound to a FAD cofactor. The assembly steps of 
the four subunits are detailed elsewhere (21). FAD is reduced 
to FADH2 after receiving electrons from succinate and then 
transfers the electrons to FeS clusters. Then, CoQ is reduced 
to QH2 after obtaining the electrons from the FeS cluster 
(3Fe‑4S) (22). Electron transport in CII is not accompanied by 
the translocation of protons.

Complex III (CIII). CIII is commonly referred to as a cyto-
chrome bcl complex, or CoQ‑cytochrome c reductase and 
transfers the electrons carried by QH2 to cytochrome c. CIII 
is a symmetrical dimer with 11 subunits per monomer (23). 
The catalytically active subunits are cytochrome b (bL and 
bH), cytochrome c1 and a high‑potential (2Fe‑2S) cluster 
wrapped by an iron‑sulphur protein (24). There are two CoQ 
binding sites on both ends of cytochrome b embedded in the 
inner membrane of the mitochondria, one of which is the QH2 
oxidation site (Qo) located at the cytoplasmic side, which is 
related to the low potential cytochrome bL. The other is the Q‑ 
reduction site (Qi) on the side of the matrix, which is related 
to the high potential cytochrome bH (25). The electron transfer 
process of CIII is accomplished by the Q‑cycle (24‑27). QH2 
is oxidized to ubisemiquinone (QH‑) after transferring an 
electron to the (2Fe‑2S) cluster and two protons are concur-
rently released into the mitochondrial intermembrane space 
(IMS) from the matrix (28). The (2Fe‑2S) cluster transfers 
this electron to cytochrome c1, from which it is transferred 
to cytochrome c, a mobile electron carrier. Then, the highly 
reductive QH‑ formed at the Qo site rapidly transfers the 
second electron to cytochrome bL, which in turn transfers 
it to cytochrome bH at the Qi site. Reduced cytochrome bH 
transfers this electron to the CoQ of the Qi site, forming a 
QH‑. To complete the Q‑cycle, the second QH2 molecule is 
oxidized at the Qo site while displacing the other two protons. 
Similarly, one electron is transferred to the (2Fe‑2S) cluster 
and the other electron to cytochrome bH and finally to QH‑ of 
the Qi site to produce QH2.

Complex IV (CIV). CIV, also known as cytochrome c oxidase, 
transfers electrons from cytochrome c to the terminal electron 
acceptor O2 to generate H2O. Mammalian CIV consists of 13 
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different subunits containing four redox‑active metal centers, 
namely, CuA, heme a (Fea) and a binuclear center composed of 
heme a3 (Fea3) and CuB (29,30). Subunits I, II, III are encoded 
by mitochondrial DNA and are the core subunits, while the 
10 nuclear‑coded subunits are the accessory subunits (31,32). 
Subunit I contains three of the four cofactors, heme a and 
the binuclear center, which transfers electrons from heme 
a to O2 (29). Subunits II and III are located on both sides of 
subunit I and there are two CuA cofactors on the side of the 
intermembrane space of subunit II. Subunit III stabilizes 
the other two core proteins and is mainly involved in proton 
pumping  (33,34). The nuclear‑coded subunits participate 
in the modulation of physiological activity via the allosteric 
ATP‑mediated inhibition of CIV, which depends on the 
ATP/ADP‑ratio (35‑39).

Cytochrome c, similar to CoQ, is a mobile electron carrier 
that is loosely connected to the outer surface of the inner mito-
chondrial membrane by electrostatic interactions, allowing 
it to interact with the cytochrome c1 of CIII and to accept 
electrons (39). The reduced cytochrome c moves along the 
surface of the membrane and interacts with subunit II of CIV 
by electrostatic interactions, simultaneously transmitting elec-
trons to the CuA site of subunit II, and then the electrons are 
passed from heme a to the binuclear center of subunit I (29,39), 
where the O2 is reduced to H2O. A total of four electrons at a 
time from cytochrome c are almost simultaneously transferred 
to bind dioxygen; eight protons in total are removed from the 
matrix, of which half are used to form the two water molecules 
and the other four are pumped across the membrane into the 
IMS (40).

Complex V (CV). CV is normally called F1F0 ATP synthase and 
consists of two functional domains: F0 and F1. The F0 domain, 
located in the inner mitochondrial membrane, contains a 
subunit c‑ring, including one of each of the subunits a, b, d, 
F6 and oligomycin sensitivity‑conferring protein (OSCP) as 
well as the accessory subunits e, f, g and A6L (41,42). The 
subunits b, d, F6 and OSCP form the peripheral stalk, which 
is located on one side of the complex. A number of additional 
subunits (e, f, g and A6L), which all span the membrane, are 

associated with the c‑ring subunit. The F1 domain, situated 
in the mitochondrial matrix, consists of soluble subunits: 
Three α subunits, three β subunits and one of each of the γ, 
δ and ε subunits (42,43). The three α and three β subunits 
make up the catalytic head of F1, and the γ, δ and ε subunits 
constitute the central stalk that connects the F1 head and F0 

subunit c‑ring (41,43,44). The ETC transfers two electrons at 
a time to monooxygen to generate one H2O molecule, which 
is accompanied by the pumping of four, four and two protons 
from the matrix to the IMS through CI, CIII, and CIV, respec-
tively (or zero, four and two protons through the CII, CIII, 
and CIV, respectively). Then, the protons pass from the IMS 
to the matrix through F0, which transfers the stored energy 
created by the proton electrochemical gradient to F1, causing a 
conformational change in F1F0 ATP synthase so that ADP can 
be phosphorylated to form ATP (41).

In conclusion, the entire composition of each individual 
complex has been well described over the past century and 
it is now widely accepted that these complexes must establish 
interactions and form supercomplexes to perform their func-
tion. Due to the application of cryo‑electron microscopy, a 
greater understanding of the high‑resolution structure of these 
complexes has been gained (45‑47).

3. ROS generation in the ETC

The sites of ROS production in the ETC. Mitochondria are 
a main source of cellular ROS. Under physiological condi-
tions, 0.2‑2% of the electrons in the ETC do not follow the 
normal transfer order but instead directly leak out of the ETC 
and interact with oxygen to produce superoxide or hydrogen 
peroxide (48,49). A total of 11 sites that produce superoxide 
(O2

‑) and/or hydrogen peroxide (H2O2) that are associated with 
substrate oxidation and the ETC have currently been identi-
fied in mammalian mitochondria (50). Sites OF, PF, BF and AF 
are in the 2‑oxoacid dehydrogenase complexes, sites IF and IQ 
are in CI, site IIIQo is in CIII, and sites IIF, GQ, EF and DQ 
are linked to the Q‑dependent dehydrogenases in the QH2/Q 
pool (50). The occurrence of numerous diseases and hypoxia 
are closely related to the increase of ROS production. CI and 

Figure 1. Generation of electron leaks and proton leaks in the electron transport chain. Electrons derived from oxidizable substrates are passed through 
CI/III/IV or CII/III/IV in an exergonic process that drives the proton pumping into the IMS of CI, CIII and CIV. The energy of the proton gradient drives 
the ATP synthesis of CV or can be consumed by UCPs. The sites of superoxide production in each complex are also indicated, including sites IF and IQ in CI, 
sites IIF in CII and site IIIQo in CIII. The O2

‑ released into the IMS by site IIIQo can be converted into H2O2 in a reaction catalyzed by superoxide dismutase 1 
and H2O2 then may diffuse into the cytoplasm. The red arrows indicate electron pathways. The black arrows represent substrate reactions. The blue arrows 
show the proton circuit across the IMM. In cyan, the complexes I‑V are marked as I, II, III, IV, V, respectively. Q, ubiquinone; C, cytochrome c; IMM, inner 
mitochondrial membrane; IMS, intermembrane space; OMM, outer mitochondrial membrane; UCP, uncoupling protein.
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CIII, especially CI, are considered to be the main sites of ROS 
production in mitochondria (51,52).

ROS can be generated in the matrix at both site IF (FMN 
site) and site IQ (CoQ binding site) during the transfer of 
electrons from NADH to CoQ in CI (Fig. 1). Rotenone and 
piericidin are site IQ inhibitors that interrupt the electron 
transfer to CoQ and increase ROS production at site IF. 
Hernansanz‑Agustin  et  al  (53) found that acute hypoxia 
produces a superoxide burst during the first few minutes in 
arterial endothelial cells and CI mainly participated in this 
process.

CII produces ROS at site IIF (Fig. 1), which is associated 
with succinate dehydrogenase. The level of ROS produced 
by site IIF under normal conditions is negligible, but the 
increases in ROS observed in CII mutation‑related diseases 
are mainly derived from site IIF (54,55). The study of isolated 
mitochondria from rat skeletal muscle also indicated that the 
maximum capacity for ROS production of site IIF is very 
high, exceeded only by site IIIQo and perhaps site IQ (50,56). 
The capacity of site IIF to produce ROS is closely related to 
the quantity of reduced flavoprotein, whose FAD is a potent 
site of electron leakage to generate ROS. ROS are exclusively 
produced in the matrix, because the flavoprotein is located 
on the matrix side of the inner mitochondrial membrane (56). 
In addition, any contribution by site IIF can be dampened by 
the occupation of the CII flavoprotein site by dicarboxylic 
acids, particularly oxaloacetate, malate and succinate, which 
blocks the access of oxygen to site IIF, where it would form 
ROS (21,57).

CIII produces small amounts of ROS, which could be 
overlooked compared to the ROS production of CI (52). CIII 
transfers electrons through the Q‑cycle. In this process, 
ubisemiquinone (QH‑) of the Qo site carrying a single 
electron can move freely in CIII, directly leaking the single 
electron to O2, forming ROS through a nonenzymatic reac-
tion (58,59). The formed ROS can be released into both the 
matrix and IMS despite the location of the Qo site on the IMS 
side of the inner mitochondrial membrane. Muller et al (60) 
built two models explaining how superoxide can reach the 
matrix. The O2

‑ released into the IMS can be converted 
to the relatively more stable form of H2O2 by superoxide 
dismutase (SOD) enzymes (Fig. 1). This permanent and 
stable oxidant molecule, which freely disperses through 
the outer membrane of mitochondria, acts as an intracel-
lular signaling molecule, physiologically functioning 
via the direct modification of amino acids (61). However, 
supporting evidence demonstrates that O2

‑ can permeate 
through the mitochondrial membrane into the cytosol 
through anion channels (62). Treberg et al (63) experiments 
in the mitochondria of wild‑type rat skeletal muscle proved 
that ~63% of ROS are produced in the matrix. Antimycin 
A can specifically block the Qi site of CIII, resulting in the 
stalling of electrons on the QH‑ at site IIIQo, which could 
react with O2 to generate ROS (64,65). As specific inhibitors 
of the Qo site, stigmatellin and myxothiazol can block the 
binding of QH2 to the Qo site, which also blocks the transfer 
of electrons into CIII, thereby preventing the production of 
ROS in CIII (64). Previously, a chemical suppressor of site 
IIIQo electron leak called S3QELs was screened and found 
to specifically suppress the ROS formation at site IIIQo 

without affecting electron transport or the redox states of 
other centers (66).

CIV is less prone to produce ROS when O2 is bound to 
Fea3

2+ or when O2 is negatively polarized (O2
‑) and expected 

to undergo a structural change. This structural change allows 
O2

‑ to receive three electron equivalents from CuB
1+, Fea3

3+ and 
the hydroxyl group of Tyr244 (Tyr‑OH) in no particular order, 
providing the complete reduction of O2 and minimizing the 
production of ROS (67). It is important to note that the binu-
clear center structure of CIV is crucial for the nonsequential 
transfer of the three electron equivalents (39,67).

ROS as signaling molecules in physiological or patho‑
logical conditions. In the past, it was believed that ROS 
were exclusively harmful to cells. However, recent studies 
have demonstrated that ROS appear to be very important 
second messengers that mediate different intracellular 
pathways (50,61,68). ROS act through the oxidative modifi-
cation of numerous types of proteins, particularly receptors, 
kinases, phosphatases, caspases, ion channels and tran-
scription factors  (68). The ROS produced from CIII are 
necessary for HIF‑1α stabilization and consequently, for 
the proliferation of cells, including vascular smooth muscle 
cells, endothelial cells and erythroid progenitors (69). There 
is ample evidence that ROS are also involved in different 
protein kinase signaling cascades, such as the protein 
kinase B (AKT), AMP‑activate protein kinase (AMPK) and 
mitogen‑activated protein kinase kinase kinase/mitogen‑acti-
vated protein kinase 8 pathways, changing the fate of cells 
between autophagy and apoptosis [(Table I and (70)]. Under 
hypoxic conditions, ROS activate AMPK, which can upreg-
ulate cytoprotective autophagy by inhibiting downstream 
mammalian target of rapamycin activity (71). ROS have also 
been demonstrated to regulate synaptic plasticity‑related 
signalling molecules, receptors and channels, including 
N‑methyl‑d‑aspartate receptor  (72), Ca2+ channel  (73,74), 
Ca2+ kinase II (CaMKII) (75), extracellular signal‑regulated 
kinase (76) and cyclic adenosine monophosphate (cAMP) 
response element binding protein (CREB) (74,77). ROS are 
also necessary for long‑term potentiation, a phenomenon 
of synaptic plasticity widely regarded as one of the main 
molecular mechanisms that form the basis of learning and 
memory (77,78). Physiological levels of ROS can promote 
the establishment of neuronal polarity and regulate neuronal 
cytoskeletal organization and dynamics by regulating intra-
cellular Ca2+ release (79‑81).

The amount of ROS generated as a result of a stimulus 
determines whether ROS play beneficial or harmful roles, 
which means different physiological or pathological pathways 
are activated. A large amount of ROS cause lipid peroxidation, 
DNA damage, protein oxidation, irreversible impairment of 
mitochondria, insufficient ATP generation and, eventually, cell 
death (82). The ROS‑mediated activation of NHE‑1 is impli-
cated in cardiac hypertrophy (83). In addition, the activation 
of CaMKII by ROS contributes to an increase in cardio-
myocyte death and the development of heart failure (84). ROS 
are involved in a number of chronic inflammatory diseases, 
particularly atherogenesis, through activating the NF‑κB 
pathway (85). In addition, it is widely known that the ROS burst 
during reperfusion plays a critical role in ischemia‑reperfusion 
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injury (86). Table II summarizes the pathologies in which ROS 
has been implicated.

4. Mitochondrial proton leak

The overview of proton leak. OXPHOS is not completely 
coupled. Under routine circumstances, a small number of 
protons do not pass through ATP synthase and instead flow 
directly into the mitochondrial matrix across the inner mito-
chondrial membrane, without the generation of ATP, in a 
process known as proton leak. In the concept of ‘respiratory 
state’ proposed by Chance and Williams (16), mitochondrial 
respiration persists in the absence of ADP (state 4) and reflects 
the oxygen consumption of proton leak. The existence of 
proton leak can also be proven by the collapse of the proton 
gradient (Δp) in the presence of the ATP synthase inhibitor 
oligomycin in isolated mitochondria (137).

It was found that the proton leak of the inner mitochon-
drial membrane demonstrated nonohmic conductivity (137). 
According to Ohm's Law (R=U/I), the resistance of a 
conductor is fixed and the electric current increases linearly 
with increasing voltage. However, the rate of proton leak 
increases exponentially with increasing ΔΨ. That is, the 
proton conductivity increases when ΔΨ is high. The exist-
ence of nonohmic conductivity indicates that there is a 
bidirectional self‑regulatory mechanism between electron 
transport and proton re‑entry: Protons are pumped out of 
the matrix into the IMS driven by the electron transport in 
CI, CIII, CIV, and ΔΨ is gradually elevated. On one hand, 
the elevated ΔΨ inhibits the transfer of electrons to further 
elevate ΔΨ, through which the inner membrane is protected 
from electric shock and maintains suitable ΔΨ. On the other 
hand, the exorbitant ΔΨ can cause the increase in proton leak 
to decrease.

Table I. The signaling pathways involved in the different cell fates in which the mitochondrial production of ROS has been 
implicated.

Cell fates	 Signaling pathways	 (Refs.)

Apoptosis	 i) Death receptor pathway: ROS‑Death receptors (FasL, TNF‑α, TRAIL)‑Caspase‑8‑Caspase‑3	 (87‑91)
	 ii) Mitochondrial pathway: ROS‑Apoptosome complex (cytochrome c, Apaf‑1
	 and dATP)‑Caspase‑9‑Caspase‑3
	 iii) ROS‑ASK1‑JNK‑Death receptor pathway/Mitochondrial pathway	
Autophagy	 i) ROS‑FOXO3‑LC3/BNIP3‑Autophagy	 (92‑97)
	 ii) ROS‑NRF2‑p62‑Autophagy
	 iii) ROS‑HIF‑1‑BNIP3/NIX‑Autophagy
	 iv) ROS‑TIGAR‑Autophagy
	 v) ROS‑Atg4‑LC3‑II‑Autophagy
	 vi) ROS‑AMPK‑ULK1 complex‑Autophagy	
Necrosis	 i) ROS‑death receptors (TNF‑α)‑RIPK1‑Necrosome (RIPK3 and MLKL)	 (98‑101)
	 ii) ROS‑PARP1‑Necrosome (RIPK3 and MLKL)
	 iii) ROS‑p53‑Bax‑MPTP opening‑Necrosis
Pyroptosis	 i) ROS‑MAPK‑ERK1/2‑NLRP3 inflammasome	 (102‑104)
	 ii) ROS‑TXNIP‑NLRP3 inflammasome		

ROS, reactive oxygen species; ERK, extracellular signal regulated kinase; MAPK, mitogen associate protein kinase; HIF, hypoxia induc-
ible factor; AMPK, AMP‑activated protein kinase; TNF, tumor necrosis factor; MPTP, mitochondrial permeability transition pore; NLRP3, 
NACHT, LRR and PYD domains‑containing protein 3; RIPK1, receptor‑interacting serine/threonine‑protein kinase 3; MLKL, mixed lineage 
kinase domain‑like protein.

Table II. The pathologies in which the mitochondrial production 
of reactive oxygen species has been implicated.

Pathology	 Representative references

Atherosclerosis	 (105,106)
Hypertension	 (107)
Ischemia‑reperfusion injury	 (86,108,109)
Cardiomyopathy	 (110,111)
Pulmonary hypertension	 (112,113)
COPD	 (114‑116)
Cancer	 (117,118)
Diabetes	 (119,120)
Non‑alcoholic liver disease	 (121,122)
Alzheimer's disease	 (119,123)
Parkinson's disease	 (124)
Schizophrenia	 (125,126)
Hearing loss	 (127,128)
Age‑related macular degeneration	 (129,130)
Obesity	 (131)
HIV‑1 infection	 (132,133)
Duchenne muscular dystrophy	 (134,135)
Periodontitis	 (136)

COPD, chronic pulmonary obstructive disorder; HIV, human 
immunodeficiency virus.
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Proton leak consists of two parts: Basal proton leak and 
inducible proton leak. Basal proton leakage is not regulated 
and is related to the lipid bilayer of the inner mitochondrial 
membrane and the adenine nucleotide translocase (ANT). 
Induced proton leak is precisely regulated and can be cata-
lyzed or suppressed by uncoupling proteins (UCPs) and ANT.

Basal proton leak has an important relationship with the 
basal metabolic rate (BMR) in mammals at rest. The lower 
the BMR of a species, the weaker the basal proton conduct-
ance. Studies have demonstrated that the extent of basal proton 
leak among species has a phylogenetic relationship (138,139). 
Although the lipid bilayer can significantly increase proton 
conductivity, only ~5% of basal proton leak is mediated by lipid 
bilayers (140) and most of the basic proton leak is correlated 
with ANT (141). UCP1, which is abundant in brown adipose 
tissue (BAT), may also be involved in basal proton leak (142), 
although there remains controversy (143). In particular, proton 
leak through ANT or UCP1 is independent of protein activity, 
as proton leak still occurs in the presence of the ANT inhibitor 
carboxyatractylate and the UCP1 inhibitor GDP (141,144).

The majority of the induced proton leak is catalyzed by 
UCPs. UCPs belong to the family of mitochondrial anion 
carrier proteins, through which the protons can reflux into the 
matrix. To date, five UCPs have been identified in mammals, 
UCP1, UCP2, UCP3, UCP4 and UCP5, and all are present in 
the form of dimers in the inner mitochondrial membrane (145). 
These UCPs have a purine nucleotide binding site located on 
a projection in the IMS (146). The purine nucleotides (ATP, 
ADP, GTP and GDP) are inhibitors of UCP‑mediated proton 
flux, whereas ROS and fatty acids are activators (147,148). In 
addition to the role of uncoupling, UCPs may also participate in 
other processes, such as the regulation of calcium homeostasis, 
ion transportation or synaptic plasticity (149,150).

UCP1‑5. UCP1 is mainly expressed in BAT, which converts 
stored energy in Δp into heat for thermogenesis (151). UCP1 
can also be detected in the beige adipocytes of white adipose 
tissue (WAT) during thermal acclimation under specific condi-
tions (152). The genetic deletion of UCP1 severely inhibits 
cold adaptive thermogenesis and diet‑induced adrenergic 
thermogenesis, and UCP1‑null mice develop fatal hypo-
thermia upon cold exposure (153,154). Interestingly, WAT can 
exert nonshivering thermogenesis with a UCP1‑independent 
pathway (155,156). UCP1 has also been found in thymocytes 
and demonstrated to be involved in the maturation and fate 
determination of developing T‑cells (157‑159). Sale et al (160) 
found that UCP1 is expressed in islets and associates with the 
acute insulin response to glucose.

UCP1‑catalyzed proton leak could be activated by long 
chain free fatty acids and inhibited by purine nucleotides (161). 
Acute cold or overfeeding stimuli induce the release of 
norepinephrine by sympathetic nerves and then induce 
cAMP‑responsive pathways through β3‑adrenergic receptors 
on brown adipocytes, which could further promote the tran-
scription of UCP1 and lipolysis for more free fatty acids (162). 
There are currently three models for the regulated mechanism 
of UCP1‑implicated proton leak (162‑169).

UCP2 and UCP3, paralogues of UCP1, exhibit ~60% 
sequence identity with UCP1 and ~70% identity with each 
other  (170,171). UCP2 is rather ubiquitous, expressed in 

WAT, BAT, macrophages, erythroid cells, thymocytes and 
pancreatic β‑cells as well as heart, brain, lung, kidney and 
lymphocytes (172‑176). The UCP3 gene is mainly expressed 
in skeletal muscle, BAT and heart (177,178) and has also been 
detected in the thymus, spleen  (179) and skin cells  (180). 
Studies with UCP2/3‑ablated mice have demonstrated that 
UCP2 and UCP3 are not implicated in adaptive thermogenesis 
or the regulation of body weight (170,181). However, the role 
of UCP2 and UCP3 in inhibiting the production of ROS in 
mitochondria by reducing ΔΨ is widely accepted (182). A 
strong correlation between ROS production and mitochondrial 
membrane potential (ΔΨ) has already been confirmed (183). 
Experiments have demonstrated that ROS production is 
increased in UCP2/3‑ablated mice (184‑186). ROS‑induced 
lipid hydroperoxides such as hydroxynonenal can activate 
UCP2/3‑mediated proton leak, but the mechanism remains 
uncertain (178). By reducing ΔΨ, the transfer of electrons in 
the ETC can be accelerated and the likelihood of electrons 
being directly transferred to O2 can be minimized. Therefore, 
mild uncoupling is a feedback mechanism adopted by the 
body to prevent excessive ROS in the mitochondria, which was 
termed ‘uncoupling to survive’ (187). However, whether UCP1 
is implicated in the regulation of ROS in BAT is still contro-
versial (175,188,189). In addition to the function of reducing 
the generation of ROS, UCP3 has been demonstrated to be 
involved in exporting mitochondrial fatty acid anions to the 
cytoplasm, thereby protecting the mitochondrial against lipid 
peroxide‑induced damage (190,191).

UCP4 and UCP5 (also called brain mitochondrial carrier 
protein 1), which have 30% homology to UCP1  (192), 
are primarily expressed in the central nervous system of 
mammals  (193,194). Although UCP4 and UCP5 are more 
widely distributed in the brain than UCP2, less is known about 
their function. UCP4 was first detected in the brain, but it has 
recently been found in adipocytes (195). In addition, UCP4 
also plays a predominant role in insect mitochondria (196). 
On the other hand, UCP5, which is not limited to the brain, is 
also expressed in the testis, uterus, kidney, lung, stomach, liver 
and heart (149). It has been demonstrated that neuronal UCP4 
and UCP5 share similar conformational and proton transport 
activities with UCP1‑UCP3 (149,197). Although UCP4 and 
UCP5 may play an unconfirmed role in the neural system, 
their function for reducing oxidative stress is clear (195,198). 
Hoang et al (149) speculated that UCP4 acts in a neuropro-
tective role during early neuronal development, while UCP2 
and UCP5 provided the protective function of restricting 
ROS production in developed neurons and other tissues, 
based on the observation that UCP2 and UCP5 displayed 
higher proton transport rates than UCP4. Oxidative stress 
has been proven to be involved in both neurodegenerative 
diseases and aging, so the UCP‑dependent reduction of ROS 
in the nervous system has the potential to be neuroprotective 
in diseases such as Alzheimer's disease, Parkinson's disease 
and amyotrophic lateral sclerosis (199,200). Certain evidence 
indicates that protein‑protein interactions exist between UCP4 
and CII: UCP4‑overexpressing neuroblastoma cells increase 
ATP synthesis via increasing the succinate‑induced respira-
tion mediated by CII (201). Pfeiffer et al (202) demonstrated 
that the Caenorhabditis elegans UCP4 plays a novel role in 
the regulation of CII by controlling succinate transport into 
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mitochondria. UCP4 was also deemed to regulate calcium 
homeostasis in neuronal cells (203).

UCPs and diseases. Regardless, as an inner mitochondrial 
membrane protein, UCP1 mainly plays a role in the main-
tenance of body temperature in a cold environment through 
non‑shivering thermogenesis and UCP2‑5 can protect cells 
from oxidative stress by reducing the mitochondrial membrane 
potential via mediating uncoupling. Due to their wide distribu-
tion, UCPs have different physiological significance in specific 
tissues. Therefore, abnormal changes in UCPs in each tissue 
will lead to tissue‑specific diseases (Fig. 2).

The ubiquitous UCP2 is associated with a number of 
metabolic diseases, such as diabetes, obesity, cardiovascular 
disease and even cancer, which has created immense interest in 
exploring the relationship between UCP2 and these diseases. 
Since UCP2 can regulate fatty acid and lipid metabolism, a 
number of studies have confirmed that UCP2 overexpression 
is associated with diet‑induced obesity (204‑206). UCP2 is 
highly expressed in pancreatic β‑cells and has a negative regu-
latory effect on insulin secretion. Robson‑Doucette et al (207) 
in 2011 demonstrated that the overexpression of UCP2 
could reduce the secretion of glucose‑induced insulin and 
subsequently induce type II diabetes (T2DM). Moreover, 
UCP2 knockout mice exhibited hyperinsulinemia and hypo-
glycaemia (208). Briefly, glucose is metabolized through the 
ETC to increase ATP production, which leads to the release 
of insulin and the production of ROS. Chronic elevated 
glucose status can lead to the excessive expression of UCP2 
to reduce the overproduction of ROS, resulting in reduced 
ATP production, reduced insulin secretion and, eventually, 
progression to diabetes  (209,210). Chronic inflammation, 
including atherosclerosis, hypertension, diabetic vasculopathy 

and ischemia‑reperfusion injury, is accompanied by excessive 
ROS production, which means that UCP2 can play a protec-
tive role in these diseases by reducing oxidative stress. The 
signaling pathways, such as nuclear factor (NF)‑κB and p53, 
that can lead to cellular senescence, inflammation, and irre-
versible vasoconstriction can be inhibited by reducing ROS 
production. A study showed that the protein levels of UCP2 
were significantly higher in human tumor tissues from the 
head and neck, skin, prostate and pancreas (211). Although the 
role of UCP2 in tumors is intuitive, the regulatory effects of 
UCP2 on cellular glucose and lipid metabolism, as well as the 
regulation of cellular oxidative stress, may be related to the 
development of tumors. Several studies have confirmed that 
UCP2 overexpression provides protection for tumor cells and 
leads to chemoresistance (212‑214).

UCP3 has been verified to be associated with exercise 
intolerance in chronic obstructive pulmonary disease (COPD) 
patients. COPD patients have exhibited impairment in the form 
of exercise intolerance, which was linked to increased levels 
of intramuscular lipid peroxidation products (114,215). Given 
the fiber‑type‑specific expression of UCP3, researchers have 
examined UCP3 levels in muscle biopsies from COPD patients 
and found that UCP3 content was reduced in COPD (216). It 
can be speculated that low muscle UCP3 levels contribute 
to impaired exercise tolerance in COPD patients based on 
the function of fatty acid anion transportation. In addition, a 
number of studies have demonstrated that the accumulation 
of lipid peroxide damage, resulting from decreased UCP3 in 
skeletal muscle, leads to excessive oxidative stress and is a 
crucial aspect in the development and progression of obesity 
and T2DM (191,217,218).

UCP4, UCP5, together with UCP2, are expressed in the 
nervous system and are implicated in several neurological 

Figure 2. Distribution of mitochondrial UCP1‑5 and their related diseases. BAT, brown adipose tissue; WAT, white adipose tissue; T2DM, type II diabetes; 
SCZ, schizophrenia; AD, Alzheimer's disease; PD, Parkinson's disease; COPD, chronic obstructive pulmonary disease; UCP, uncoupling proteins.



ZHAO et al:  MITOCHONDRIAL ETC, ROS GENERATION AND UNCOUPLING10

disorders, such as schizophrenia (SCZ), Alzheimer's disease 
(AD), and Parkinson's disease (PD). Various studies link 
UCP2 with neurodegeneration and aging (123,124,219). The 
three UCPs exert neuroprotective effects mainly through 
the alleviation of oxidative stress. The results from selected 
single nucleotide polymorphism markers within the neuronal 
UCPs showed that UCP2 and UCP4 are important in the 
genetic etiology of SCZ  (219). Surprisingly, despite the 
downregulation of UCP2 mRNA levels in SCZ patients, 
Gigante et al (220) found that there were no differences in 
UCP2 protein between patients and controls. Future studies 
will be necessary to clarify whether the mechanism of UCP2 
is protective and opposes SCZ progression. Furthermore, in 
the brains of AD patients, the expression levels of UCP2, 4, 
and 5 were significantly reduced, which limited the activa-
tion of cytoprotective mechanisms to slow the progress of 
AD (124). UCP5 and, especially, UCP4 are linked to PD. 
UCP4 is regulated by the oxidized DJ‑1 and partially via 
the NF‑κB pathway and can protect against oxidative stress 
and stabilize Ca2+ homeostasis in PD, as demonstrated by 
Ramsden et al (148) in 2012. Drugs that induce neuronal 
UCP expression might represent another effective strategy 
to ameliorate PD.

5. Concluding remarks and perspective

In conclusion, the ETC is the core component of mitochon-
dria. The OXPHOS process in the ETC, coupled with the 
generation of ATP, also results in ROS production. As a 
double‑edged sword, ROS can play a role in signaling path-
ways, but ROS overproduction can cause cellular damage. 
The ROS produced by CIII is not only released into the 
matrix but also released into the IMS. The ROS released into 
the IMS can be converted to H2O2 in a reaction catalyzed 
by SOD1, and the H2O2 may diffuse out of the mitochondria 
and play an important role in physiological and pathological 
pathways. Therefore, the artificial regulation of ROS at the 
CIII site (site IIIQo) may be of great significance. Although the 
precise mechanism of ROS production is still unclear, the use 
of specific ROS inhibitors to reduce the excessive production 
of ROS under pathological conditions has ameliorated oxida-
tive stress‑mediated diseases. UCP‑mediated proton leak is 
a positive feedback mechanism for the protection of cells 
against oxidative stress due to the rapid production of ATP. 
The proper activation of UCPs can reduce the production of 
cellular ROS without causing a decrease in ATP; however, 
when the expression of UCPs becomes too high or too low 
or the UCP genes are mutated, pathological effects that are 
involved in various diseases can occur. UCP1 mediates the 
inducible proton conductance that is responsible for non‑shiv-
ering thermogenesis in BAT, a critical response to prolonged 
cold exposure. UCP2 is involved in a variety of diseases, such 
as diabetes, obesity and cardiovascular disease. In addition, 
UCP2, UCP4 and UCP5 play an important role in neuropro-
tection and are associated with neurological diseases such 
as SCZ, AD and PD. Drugs targeting UCP expression and 
activity might represent as an effective strategy to ameliorate 
these diseases. However, the detailed mechanisms of the role 
of UCPs and the regulation of UCP expression under normal 
and stressful situations warrant further exploration.
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