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Abstract. The objective of the present review was to summa‑
rize the molecular mechanisms associated with the effects of 
the vitamins A, C, E and K, and group B vitamins on bone 
and their potential roles in the development of osteoporosis. 
Epidemiological findings have demonstrated an association 
between vitamin deficiency and a higher risk of developing 
osteoporosis; vitamins are positively related to bone health 
upon their intake at the physiological range. Excessive vitamin 
intake can also adversely affect bone formation, as clearly 
demonstrated for vitamin A. Vitamins E (tocopherols and toco‑
trienols), K2 (menaquinones 4 and 7) and C have also been shown 
to promote osteoblast development through bone morphoge‑
netic protein (BMP)/Smad and Wnt/β‑catenin signaling, as 
well as the TGFβ/Smad pathway (α‑tocopherol). Vitamin A 
metabolite (all‑trans retinoic acid) exerts both inhibitory and 
stimulatory effects on BMP‑ and Wnt/β‑catenin‑mediated 

osteogenesis at the nanomolar and micromolar range, respec‑
tively. Certain vitamins significantly reduce receptor activator 
of nuclear factor kappa‑B ligand (RANKL) production and 
RANKL/RANK signaling, while increasing the level of osteo‑
protegerin (OPG), thus reducing the RANKL/OPG ratio and 
exerting anti‑osteoclastogenic effects. Ascorbic acid can both 
promote and inhibit RANKL signaling, being essential for 
osteoclastogenesis. Vitamin K2 has also been shown to prevent 
vascular calcification by activating matrix Gla protein through 
its carboxylation. Therefore, the maintenance of a physiological 
intake of vitamins should be considered as a nutritional strategy 
for the prevention of osteoporosis.
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1. Introduction

Osteoporosis is as a skeletal disorder characterized by 
reduced bone mineralization and strength, leading to an 
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increased risk of fractures  (1). The overall prevalence of 
osteoporosis worldwide has been estimated at 18.3%, with 
an almost 2‑fold higher prevalence in females (23.1%) than 
males (11.7%) (2). Osteoporosis is also characterized by high 
geographic differences, with the highest prevalence in Africa 
(26.9%) (3). Yet, even in developed countries, the economic 
burden of osteoporosis‑related fractures is significant, with 
annual costs of 17.9 billion USD and 4 billion GBP in the 
USA and UK, respectively  (4). The geographic heteroge‑
neity of osteoporosis is mediated by the distinct prevalence 
of risk factors, including genetic patterns, environmental 
factors, sedentary lifestyle, smoking, alcohol use, medica‑
tions (glucocorticoids), morbidities (hyperparathyroidism, 
rheumatoid arthritis, diabetes mellitus, cancer), as well as 
nutritional deficiencies (5).

Nutritional factors play a critical role in the prevalence 
of osteoporosis (6) with Ca2+ and vitamin D considered as 
critical for bone health (7). The role of vitamin D deficiency 
in osteoporosis  (8) is mediated by the role of its active 
form, 1,25‑dihydroxy vitamin D, in regulation of mineral 
metabolism and bone remodeling through its effects 
on osteoblast and osteoclast formation and activity  (9). 
However, increasing evidence demonstrates that other 
micronutrients, aside from Ca2+ and vitamin D, including 
minerals and trace elements, vitamins, and polyphenols can 
modify the risk of developing osteoporosis (10,11). It has 
been demonstrated that several vitamin groups, including 
vitamins A, E, K, C and B, are involved in regulation of 
bone turnover, and that their insufficiency may be consid‑
ered as a dietary risk factor for osteoporosis (12). However, 
the existing epidemiological studies are inconsistent and 
the understanding of molecular mechanisms underlying the 
role of non‑vitamin D vitamins in modulating bone health 
have yet to be clearly defined. Specifically, the effects of 
vitamins on bone metabolism and osteoporosis pathogen‑
esis are expected to depend on the particular form of the 
vitamin (13,14) or exposure dose (15).

The objective of the present review was to highlight 
the molecular mechanisms of the effects of vitamin groups 
A, C, E, K and B on bone and their potential role in the 
development of osteoporosis. To the best of our knowl‑
edge, this is the first comprehensive review focusing on the 
association between the intake of vitamins A, C, E and K, 
and group B vitamins and osteoporosis since the article 
by Ahmadieh and Arabi (16) published over than a decade 
ago and focusing mainly on epidemiological data. Since 
the publication of the aforementioned study (16) significant 
progress has been made in understanding the molecular 
mechanisms of vitamin functions in bone has been achieved, 
while epidemiological studies provided additional evidence 
on the association between vitamin status and osteoporosis. 
Therefore, in the present review, the role of vitamin forms 
and doses and their biological effects on bone tissue are 
discussed in detail, with particular focus on the most recent 
findings. Given the high prevalence of osteoporosis and 
vitamin deficiency worldwide, the further understanding of 
the role of vitamins as osteoprotective agents may mark‑
edly improve the prevention of and treatment strategies for 
osteoporosis, as well as prevent adverse effects of excessive 
supplementation.

2. Vitamin E

Vitamin E (VE) is a fat‑soluble vitamin with antioxidant activity 
that is present in the form of tocopherols (α‑, β‑, γ‑ and δ‑) 
and tocotrienols (α‑, β‑, γ‑ and δ‑) (17). VE is considered as 
bone‑protecting due to its complex effects on bone physiology 
that are not limited to its antioxidant activity (18). A Mendelian 
randomization study demonstrated a significant positive 
association between circulating α‑tocopherol levels and bone 
mineral density (BMD) (19). A low serum VE level has been 
found to be associated with a reduced BMD, and has therefore 
been considered a risk factor for osteoporosis in post‑meno‑
pausal women (20).

Correspondingly, low serum α‑tocopherol concentrations 
have been found to be associated with a 51 and 58% increase 
in the hazard ratio of hip fractures in older Norwegians (21) 
and Swedes (22). In turn, supplementation with tocotrienol, a 
form of VE, for 12 weeks was shown to decrease oxidative 
stress and bone resorption in post‑menopausal women with 
osteopenia (23,24).

Despite a positive association between serum α‑tocopherol 
and femoral neck BMD observed in the Aberdeen Prospective 
Osteoporosis Screening Study, the authors considered this 
association to lack biological significance  (25). However, 
the analysis of NHANES 2005‑2006 data demonstrated an 
inverse association between the serum α‑tocopherol levels and 
femoral neck BMD following adjustment for confounders (26).

Notably, serum α‑tocopherol, but not γ‑tocopherol, has 
been found to be inversely associated with bone formation 
marker, procollagen type 1 amino‑terminal propeptide, 
in post‑menopausal women (27). These findings generally 
corroborate the earlier observed inverse relationship between 
α‑tocopherol intake and γ‑tocopherol levels (28).

Experimental studies with in vivo models of osteoporosis 
have also demonstrated that VE exerts osteoprotective effects. 
Specifically, VE supplementation has been shown to improve 
bone histomorphometry, with the most profound effect upon 
γ‑tocotrienol treatment when compared to α‑tocopherol and 
δ‑tocotrienol (29). At the same time, Muhammad et al (30) 
reported similar protective effects of tocotrienol and 
α‑tocopherol against bone loss in ovariectomized rats.

In addition, tocotrienol supplementation has been shown 
to improve bone calcination in testosterone deficiency‑asso‑
ciated osteoporosis (31). In ovariectomy‑induced osteoporotic 
fractures, α‑tocopherol supplementation has been found 
to significantly improve fracture healing, although it does 
not increase callous bone volume in rats  (32), nor does it 
improve bone strength (33). It has been shown that both an 
intraperitoneal  (34) and intramuscular  (35) injection with 
α‑tocopherol significantly increases BMD and osteogenesis, 
as well as osteoblast activity in a rabbit model of distraction 
osteogenesis.

Correspondingly, VE deficiency has been shown to alter 
exercise‑induced plasma membrane disruptions, membrane 
repair and the survival of osteocytes (36). The co‑administra‑
tion of Se and vitamin C (VC) with VE significantly increases 
its efficiency in the improvement of bone structure (37). In 
turn, excessive VE intake has failed to induce bone loss in 
an animal model of ovariectomy‑induced osteoporosis (38), as 
well as in normal female rats (39).
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The association between VE intake and bone health 
established in the aforementioned epidemiological studies is 
mediated by the influence of tocopherols and tocotrienols on 
bone physiology.

In agreement with the role of VE as an antioxidant, tocoph‑
erol has been shown to promote the osteogenic differentiation 
and oxidative stress resistance of rat bone marrow‑derived 
mesenchymal stem cells by inhibiting H2O2‑induced ferroptosis 
by increasing the phosphorylation of PI3K, Akt and mamma‑
lian target of rapamycin (mTOR) (40). α‑tocopherol‑stimulated 
osteoblastogenesis has been shown to be associated with 
the upregulation of alkaline phosphatase (ALP)2, TGF1β, 
fibroblast growth factor receptor 1, MMP‑2, muscle segment 
homeobox 2, bone morphogenetic protein (BMP)‑1, VEGF‑B, 
Runx2, Smad2 and other genes, whereas the expression 
of osteopetrosis‑associated transmembrane protein  1, 
microphthalmia‑associated transcription factor (MITF) and 
EGFR genes is downregulated (41). VE has been shown to 
reduce osteocyte apoptosis in a model of steroid‑induced 
osteonecrosis through inhibition of caspase‑3 expression and 
upregulation of Bcl‑2 (42). At the same time, α‑tocopherol 
and δ‑tocopherol may also inhibit osteoblast differentiation 
from the early stages of osteogenesis to the osteoid‑producing 
stage  (43). At the same time, both α‑tocopherol (100 and 
200 µM) and δ‑tocopherol (2 and 20 µM) significantly reduces 
osteoblast differentiation (43).

In addition to the promotion of osteoblast differentiation, 
tocopherol has been shown to inhibit IL‑1‑induced osteoclas‑
togenesis through the downregulation of receptor activator 
of nuclear factor kappa‑B ligand (RANKL) mRNA expres‑
sion (44). The VE‑induced inhibition of osteoclastogenesis 
may also be associated with reduced monocyte and lympho‑
cyte production (45). In addition, treatment with 10‑20 µM 
α‑tocopherol has been shown to result in reduced bone mass 
by upregulating osteoclast fusion via p38 MAPK and MITF 
activation (46).

It has also been demonstrated that another form of VE, 
tocotrienol, may also significantly modulate bone formation 
and resorption  (47) in a distinct manner of that observed 
for tocopherols  (48). γ‑tocotrienol significantly promotes 
Runx2‑dependent osteoblastogenesis with the upregula‑
tion of ALP, osteocalcin (OCN) and type  I collagen  (49). 
Annatto‑derived tocotrienol has been found to significantly 
increase osteoblast differentiation, as evidenced by increased 
osterix (OSX), COL1α1, ALP and OCN gene expression, and 
enhanced mineralization (50).

Tocotrienol also significantly increases mineralization 
in osteoblasts by increasing BMP‑2 protein expression in 
association with the downregulation of RhoA activation 
and HMG‑CoA reductase gene expression  (51). The toco‑
trienol‑induced upregulation of BMP‑2 and BMP‑4 gene 
expression has also been shown to be associated with the 
stimulation of Wnt/β‑catenin signaling (52). d‑δ‑tocotrienol 
(0‑25 µmol/l) has been shown to induce MC3T3‑E1 preosteo‑
blast differentiation through the upregulation of BMP‑2 and 
the inhibition of HMG‑CoA reductase expression, resulting in 
mineralized nodule formation (53).

δ‑tocotrienol also promotes osteoblast migration through 
an increase in Akt phosphorylation and Wnt/β‑catenin 
signaling activation (54). Notably, at low doses, γ‑tocotrienol 

has been shown to exert protective effects on osteoblasts 
against H2O2‑induced oxidative stress and apoptosis, whereas 
high doses are cytotoxic and induce apoptotic cell death (55). 
It has also been demonstrated that δ‑tocotrienol protects 
osteoblastic MC3T3‑E1 and MLO‑Y4 cells from oxidative 
stress and subsequent apoptosis through the upregulation of 
glutathione production and the upregulation of the PI3K/Akt 
and nuclear factor‑erythroid factor 2‑related factor 2 (Nrf2) 
signaling pathways (56). The osteogenic effects of γ‑tocotrienol 
on human bone marrow‑derived mesenchymal stem cells have 
been shown to be mediated by the promotion of p‑AMPK and 
p‑Smad1 phosphorylation (57).

α‑Tocotrienol, but not α‑tocopherol, has been shown 
to reduce osteoclastogenesis (58) through the inhibition of 
RANKL expression along with the downregulation of c‑Fos 
expression (59). Specifically, γ‑tocotrienol has been shown to 
inhibit RANKL mRNA expression, while increasing osteopro‑
tegerin (OPG) mRNA expression in human bone‑derived cells, 
whereas α‑tocopherol is capable of only upregulating OPG 
expression (60). Tocotrienol has also been shown to inhibit 
IL‑17‑induced osteoclastogenesis in rheumatoid arthritis 
fibroblast‑like synoviocytes through the downregulation of 
mTOR, ERK and IκB phosphorylation, and the inhibition of 
RANKL mRNA expression, while increasing AMPK phos‑
phorylation (61). In a model of metabolic syndrome‑associated 
osteoporosis supplementation with tocotrienol, there was a 
significant reduction in RANKL and FGF‑23 expression, 
as well as a reduction in Dickkopf‑related protein (DKK)‑1 
levels, being indicative of Wnt pathway activation (62) (Fig. 1).

Annatto bean‑derived tocotrienol has also been shown to 
prevent bone resorption in testosterone‑deficiency‑associated 
osteoporosis in rats (63). γ‑tocotrienol also reduces ovariec‑
tomy‑induced bone loss in mice through HMG‑CoA reductase 
inhibition (64). Moreover, palm oil‑derived tocotrienols have 
been shown to prevent bone loss in ovariectomized rats more 
effectively than Ca2+ (65). The inhibition of skeletal sclerostin 
expression may be also responsible for the anti‑osteoporotic 
effects of annatto tocotrienol in ovariectomized rats in parallel 
with the reduction of the RANKL/OPG ratio (66). According 
to the positive role of tocotrienols in the prevention of bone 
resorption, these were considered as the potential treatment 
strategy for menopause‑associated osteoporosis (67).

In general, VE may be considered as an osteoprotective 
agent, although the biological effects are strongly dependent on 
the specific forms. Epidemiological studies have demonstrated 
that the serum α‑tocopherol level is significantly associated 
with BMD, whereas its deficiency is related to an increased 
risk of fractures, although certain inconsistencies exist. Both 
tocopherol and tocotrienol isomers significantly increase 
bone quality and promote regeneration in animal models of 
osteoporosis. α‑tocopherol has been shown to exert osteogenic 
effects due to its antioxidant effects, the inhibition of osteo‑
blast ferroptosis and apoptosis, as well as the activation of 
the TGF1β/Smad and PI3K/Akt pathways. Even more potent 
osteogenic effects have been demonstrated for tocotrienol that 
promote BMP‑2 and Wnt/β‑catenin signaling, also activating 
Akt and protecting the cells from oxidative stress and apop‑
tosis. The inhibitory effects of both tocopherol and tocotrienol 
on osteoclast formation have been shown to be mediated by 
the inhibition of inflammation‑associated RANKL‑induced 
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osteoclastogenesis. Therefore, dietary VE as tocotrienol, has 
been shown to exert osteoprotective effects in laboratory 
studies, although epidemiological data are available only for 
tocopherol.

3. Vitamin K

Vitamin K (VK) is a lipid‑soluble vitamin that is found in 
the form of VK1 (phylloquinone), VK2 (menaquinone), VK3 
(menadione) and synthetic derivatives (68). VK2, being present 
most commonly in the form of menaquinone‑4, 7 and 10 (indi‑
cating the number of isoprenyl groups at C3 position), has been 
shown to be involved in the regulation of bone remodeling (69).

VK has been shown to be a cost‑effective strategy for 
preventing fractures in older women (70). A recent meta‑anal‑
ysis of 16 randomized controlled trials with 6,425 subjects 
involved demonstrated that VK2 supplementation significantly 
improved BMD and reduced the risk of fractures (71), as well 
as undercarboxylated OCN levels  (72) in post‑menopausal 
women. Similarly, other meta‑analyses have demonstrated 
positive impact of vitamin K on BMD and fracture risk (73). 
Correspondingly, in 10‑year follow‑up studies, a higher dietary 
intake of VK was shown to be associated with a 24% decrease 
in the relative fracture risk (74). Each 1 µg/l increase in serum 
VK1 (phylloquinone) levels was associated with a 45% reduc‑
tion in fracture risk in post‑menopausal osteoporosis due to an 
increase in hip strength (75). However, no significant effects 
of phylloquinone intake on bone turnover or bone mass were 
observed in adult patients with Crohn's disease (76). In turn, 
low plasma phylloquinone levels were associated with a higher 
incidence of vertebral fractures, although no significant differ‑
ence in BMD in subjects with low and high plasma K1 levels 

was observed (77). VK intake was also shown to be inversely 
associated with undercarboxylated OCN that was negatively 
associated with lumbar BMD and was directly interrelated 
with urinary type‑I collagen cross‑linked‑N‑telopeptide levels, 
a marker for bone resorption (78).

A previous meta‑analysis demonstrated that the combina‑
tion of vitamin D with VK significantly increased total BMD 
with the more profound effect observed in VK2 users (79). The 
co‑supplementation of phylloquinone with vitamin D3 and 
calcium has been shown to increase BMD and bone mineral 
content (BMC) at the ultradistal radius (80). The combined 
administration of VK and Ca2+ also possessed positive 
effect on BMD, as evidenced by a recent meta‑analysis (81). 
Correspondingly, a low dietary Ca2+ and VK intake was consid‑
ered a risk factor for osteoporotic fractures in women (82). In 
a previous study, a 3‑year low‑dose MK‑7 supplementation 
in healthy post‑menopausal women significantly reduced the 
aging‑associated decrease in lumbar spine and femoral neck 
BMD and BMC, vertebral height and bone strength (83). The 
administration of 375 µg MK‑7 for 12 months prevented an 
increase in trabecular spacing and the reduction of trabecular 
number in post‑menopausal women with osteopenia (84). The 
results of a 24‑month trial demonstrated a significant reduc‑
tion in the incidence of fractures in patients with osteoporosis 
supplemented with MK‑4 when compared to the control 
groups (85). Consistently, the results from a meta‑analysis 
demonstrated that MK‑4 intake significantly improved BMD 
and decreased the risk for vertebral fractures as compared to 
treatment with the placebo (86).

Furthermore, serum VK2 levels are significantly reduced 
in post‑menopausal osteoporotic patients (87). Respectively, 
the simultaneous assessment of circulating VK levels with 
other markers of osteoporosis, including pyridinoline and bone 
alkaline phosphatase, has been shown to significantly increase 
diagnostic value of the latter in osteoporotic women (88). It has 
also been demonstrated that the plasma MK‑7 level is reduced 
earlier than the vitamin D concentration in post‑menopausal 
women with osteoporosis (89). However, no significant asso‑
ciation of circulating VK1, MK‑4 and MK‑7 with vertebral or 
hip fractures has been observed (90).

In animal models of osteoporosis, VK has also been 
shown to exert osteoprotective effects. Specifically, VK 
supplementation was even shown to be more effective in the 
improvement of bone characteristics in a model of immo‑
bilization osteoporosis as compared to combined Ca2+ and 
vitamin D administration (91). A similar protective effect of 
VK2 (menatetrenone) was observed in a model of glucocor‑
ticoid‑  (92,93) and hyperglycemia‑induced  (94) bone loss. 
MK‑7 has been shown to promote diaphyseal and metaphyseal 
Ca2+ deposition due to increased osteoblastic proliferation and 
differentiation (95). Moreover, MK‑7, but not MK‑4 intake, has 
also bees shown to improve bone microstructure characterized 
by higher trabecular number, improved trabecular architecture 
and greater bone volume in ovariectomized rats (96).

The results obtained from laboratory studies are gener‑
ally consistent with those from the epidemiological studies, 
also demonstrating the osteogenic effects of VK, although 
the specific effects and underlying mechanisms have been 
shown to be greatly dependent on the forms and homologues 
of VK.

Figure 1. Role of the PI3K/Akt/mTOR pathway in the osteogenic effects of 
vitamin E. Tocopherol increases PI3K, Akt and mTOR phosphorylation, as 
well as TGF1β gene expression. Similarly, tocotrienol upregulates PI3K/Akt 
signaling.
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MK‑7 has been shown to promote MC3T3E1 cell differ‑
entiation characterized by an increased OCN, OPG and 
RANKL mRNA expression (97). Menaquinone‑7 treatment 
also increases osteoblast migration and activity along with the 
downregulation of Runx2 expression, indicative of promotion 
of cell maturation (98). MK‑7‑induced osteogenesis has also 
been found to be associated with a significant increase in BMP‑2 
mRNA expression, tenascin C gene expression and increased 
p‑Smad1 levels in MC3T3E1 cells  (99). MK‑7 promotes 
vitamin D3‑induced osteogenesis that may be at least partially 
mediated by the enhanced expression of genes, including 
growth differentiation factor‑10 (GDF10), IGF1, VEGFA and 
fms‑related tyrosine kinase 1 (FLT1) (100). Concomitantly, 
hydrophobins‑modified menaquinone‑7 has been shown to be 
more effective in increasing osteoblast differentiation, while 
reducing osteoclastogenesis in MC3T3‑E1 cells, as compared 
to native MK‑7  (101). It has also been demonstrated that 
MK‑7 inhibits basal and cytokine‑induced NF‑κB signaling 
through an increase in IκB mRNA expression, and ameliorates 
TNFα‑induced inhibition of SMAD signaling (102). These 
findings generally resemble the earlier observed amelioration 
of inhibitory effect of inflammation on osteogenesis through 
down‑regulation of IL‑6‑induced JAK/STAT signaling upon 
VK2 treatment (103).

MK‑4 has been shown to be the most potent promotor 
of bone formation compared to estrogen, icariin, lacto‑
ferrin and lithium chloride  (104). It has been sown that 
menaquinone 4 inhibits ovariectomy‑induced bone loss by 
increasing osteoblast activity with the stimulation of BMP‑2 
and Runx2 signaling, and the downregulation of osteoclast 
differentiation (105). Correspondingly, the osteogenic effect 
of MK‑4 has been shown to be mediated by the activation 
of the Wnt/β‑catenin signaling pathway (106). In addition to 
increased osteoblast proliferation, the osteogenic effect of 
MK‑4 may be associated with the inhibition of Fas‑induced 
osteoblast apoptosis  (107). Correspondingly, MK‑4 also 
prevents osteoblast apoptosis through the upregulation of 
FoxO signaling and the reduction of reactive oxygen species 
(ROS) production  (108), in agreement with the observed 
upregulation of SIRT1 signaling and the inhibition of mito‑
chondrial dysfunction and endoplasmic reticulum stress 
(ERS) (109). At the same time, MK‑4 reduces excessive bone 
mineralization induced by Mg deficiency  (110). It is also 
notable that in vascular smooth muscle cells, MK‑4 reduces 
β‑glycerophosphate‑induced calcification by downregulating 
BMP‑2 and Smad1 expression (111).

Other mechanisms underlying the osteogenic effects 
of VK2 have been shown to include the amelioration of 
hyperglycemia‑induced bone loss and ferroptosis through 
the upregulation of AMPK/SIRT1 signaling (94). Induction 
of autophagy may also contribute to osteogenic effect of 
VK2 (112). Correspondingly, VK2 enhances the inhibitory 
effects of dexamethasone on osteoblast autophagy/mitophagy, 
thus displaying protective effects on osteoblast differentia‑
tion and mineralization (113). The effects of VK on bone may 
be also dependent on its binding to steroid and xenobiotic 
receptor  (114) with its subsequent activation  (115,116). 
Finally, the osteogenic effect of VK2 in a culture of bone 
marrow stromal cells has also been shown to be mediated by 
the nhibition of miR‑133a expression (117).

Several studies have demonstrated that VK is capable of 
inducing osteoblast formation, while inhibiting osteoclast 
differentiation and bone‑resorbing activity. Specifically, in 
a culture of bone marrow cells, MK‑4 was found to signifi‑
cantly inhibit adipogenic and osteoclastogenic differentiation, 
while promoting osteoblast differentiation (118). It has been 
demonstrated that, in comparison to VK1 and VK3, MK7 
and particularly MK4, are more effective in the promotion 
of osteoblast activity and the inhibition of osteoclastic bone 
resorption (119), although another study demonstrated a higher 
anti‑osteoclast activity for MK7 (120). Both phylloquinone 
(VK1) and menaquinone‑4 have been shown to promote 
osteogenesis, as evidenced by increased OCN and OPG levels 
in parallel with decreased circulating RANKL levels in a 
model of high‑fat‑induced obesity (121). Both MK‑4 and VK1 
significantly reduce dihydroxyvitamin D3‑induced osteoclas‑
togenesis mainly by reducing RANKL expression (observed 
at 1.0 µM), whereas the upregulation of OPG expression has 
been observed at higher exposure levels (10 µM) (122). MK‑4 
also reduced 1,25(OH)2D3‑induced formation of multinucle‑
ated osteoclasts (123). It has been also demonstrated that MK‑7 
ameliorated parathyroid hormone (PTH) and prostaglandin 
E2 (PGE2)‑induced bone resorption by osteoclasts (124,125).

The inhibition of RANKL‑induced osteoclastogenesis 
by menaquinone 4 and 7 has been found to be dose‑depen‑
dent (126). The MK‑4‑induced inhibition of RANKL signaling 
has been shown to result in the subsequent reduction of nuclear 
factor of activated T‑cells 1 (NFATc1), osteoclast‑associated 
receptor and cathepsin K mRNA expression (127). In addition 
to the downregulation of RANKL signaling, menaquinone 4 
or VK1 have been shown to inhibit macrophage colony stimu‑
lating factor (M‑CSF)‑induced osteoclast differentiation in a 
dose‑dependent manner (128).

The biological effects of VK on Ca2+ and skeletal homeo‑
stasis are dependent on its role as a cofactor of γ‑glutamyl 
carboxylase, which promotes the conversion of specific gluta‑
mate (Glu) residues to gamma‑carboxyglutamic acid (Gla) 
residues (129). In addition to hemostatic factors, VK has been 
shown to be involved in the post‑translational carboxylation of 
OCN and matrix Gla protein, which may also have a signifi‑
cant impact on osteogenesis and systemic metabolism (130).

Although OCN is an abundant protein of bone extracellular 
matrix, its functioning has been shown to not be responsible 
for the regulation of bone development; rather, it plays a 
crucial role in the improvement of bone strength by adjustment 
of biological apatite parallel to collagen fibrils (131), as well 
as carbohydrate metabolism regulation in its uncarboxylated 
form (132). At the same time, the VK‑induced decrease in 
the level of undercarboxylated OCN did not induce insulin 
resistance, and the change in percentage of undercarboxylated 
OCN is directly associated with the improvement of glucose 
sensitivity (133). Moreover, VK treatment has been shown to 
increase OCN gene expression, resulting in an improvement of 
β‑cell proliferation and adiponectin production, thus exerting 
a hypoglycemic effect (134). In agreement with this, insulin 
signaling in osteoblasts has been shown to result in reduced 
OCN γ‑carboxylation, thus increasing its hypoglycemic 
effect (135).

Analogous to OCN, matrix Gla protein has been 
shown to be activated by VK‑dependent carboxylation and 
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phosphorylation, exerting a significant inhibitory effect on 
vascular calcification (136), and the level of non‑phosphor‑
ylated uncarboxylated matrix Gla protein (MGP) may be 
considered as a biomarker of VK status (137). Therefore, 
VK deficiency is associated with a reduced Ca2+ deposition 
in bones and an increase in vascular calcification  (138). 
Menaquinone‑4 insufficiency is also considered as a 
predictor of aortic calcification (139). Moreover, the admin‑
istration of VK antagonists has been shown to significantly 
increase dephosphorylated and uncarboxylated matrix 
Gla protein levels, which directly correlated with vascular 
calcification (140). Correspondingly, MK‑4 has been shown 
to inhibit the osteogenic transdifferentiation of vascular 
smooth muscle cells and preserve a contractile phenotype 
in spontaneously hypertensive rats (141). Active MGP has 
been shown to inhibit osteogenic stimuli by binding to 
BMP‑2 and reducing mineralization, whereas inactive MGP 
is unable to inhibit the osteogenic differentiation of vascular 
smooth muscle cells (142). The protective effects of VK on 
vascular calcification may also be mediated by its influence 
on Gla‑rich protein and growth arrest‑specific gene 6 protein 
expression (143) (Fig. 2).

Taken together, the existing clinical and laboratory data 
demonstrate that VK supplementation effectively improves 
BMD and reduces the risk of fractures in post‑menopausal 
women. In addition it enhances the anti‑osteoporotic effects 
of vitamin D and Ca2+ supplementation. The osteogenic effect 
of VK2 as MK4 and MK7 has been shown to be attributed 
to the activation of BMP‑2 and Wnt/β‑catenin signaling, the 
promotion of autophagy and the amelioration of the inhibitory 
effects of pro‑inflammatory cytokines on SMAD signaling. 
VK2 also exerts protective effects in osteoblast culture by 
preventing apoptosis and ferroptosis. In addition to the osteo‑
genic effect, it also inhibits bone resorption by inhibiting 
osteoclastogenesis and activation by downregulating RANKL 
signaling with a shift to OPG activation. VK has also been 
shown to prevent vascular calcification by activating MGP, 
therefore directing Ca2+ from the vascular wall to its deposi‑
tion in bones. Therefore, VK may be considered protective, not 
only against osteoporosis, but also vascular calcification and 
associated cardiovascular disease.

4. Vitamin A

Vitamin A (VA) has been shown to be involved in the regula‑
tion of bone physiology through retinoic acid receptor (RAR) 
signaling (144), although the existing data on the association 
between VA intake or accumulation and BMD remain contro‑
versial due to the distinct effects of different doses (145).

In osteoporotic untreated post‑menopausal women, serum 
retinol has been shown to be directly associated with the risk 
of low bone mass at the lumbar spine and femoral neck (146). 
The association between high retinol levels and osteoporosis 
is aggravated in subjects with vitamin D deficiency (147). 
Concomitantly, a U‑shaped association between the plasma 
retinol concentration and BMD has been observed, with both 
deficiency and excess being associated with a lower BMD in 
children (148). These findings generally corroborate an obser‑
vation of improved bone formation following the reduction of 
VA in children with high vitamin stores (149). The results of a 

meta‑analysis demonstrated that the intake of VA and retinol, 
but not β‑carotene, was associated with the risk of hip frac‑
tures, although serum retinol levels were characterized by a 
U‑shaped association with the risk of hip fractures (14).

It is noteworthy that, in non‑supplemented subjects with 
a low dietary VA intake, plasma levels of retinol and carot‑
enoids were inversely associated with osteoporosis (150,151). 
Moreover, the maternal plasma retinol level is directly asso‑
ciated with adult offspring spine BMD and trabecular bone 
score following adjustment for multiple covariates, including 
vitamin D levels (152).

Recent findings have demonstrated that the association 
between the VA status and the risk of fractures as the outcome 
of osteoporosis is not significant. Specifically, no association 
between high serum retinol levels and an increased risk of 
fractures was observed in the elderly involved in Norwegian 
Epidemiologic Osteoporosis Studies (153). The results of a 
meta‑analysis demonstrated that an increased VA intake was 
not associated with a risk of fractures (154). No association 
between VA intake with BMD or the risk of fractures was 
observed in pre‑menopausal women with a lower baseline VA 
intake level (155). It is proposed that the association between 
a high VA intake and an increased risk of fractures may be 
mediated by an increased body mass index (156).

Figure 2. Role of VK2 in the prevention of vascular calcification via carbox‑
ylation of MGP. Briefly, VK2 has been used as a cofactor for γ‑glutamyl 
carboxylase, which converts glutamate residues of dephosphorylated, 
dp‑ucMGP, to γ‑carboxyglutamic residues, resulting in the formation of 
dp‑cMGP. Further phosphorylation induces the formation of active MGP, 
which inhibits BMP2‑induced osteogenic signaling in vascular cells, and 
binds Ca2+ cations, in turn, preventing hydroxyapatite formation. KH2, 
vitamin K hydroquinone; KO, vitamin K epoxide; MGP, matrix Gla protein; 
dp‑ucMGP, uncarboxylated MGP; dp‑cMGP, dephosphorylated carboxylated 
MGP.
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The VA status is also tightly associated with the dietary 
intake of provitamin A carotenoids that may also have a 
significant effect on bone health (157). A high dietary total 
carotenoid intake (Q1 vs. Q4) has been shown to be associated 
with a 39% lower risk of hip fractures in males, whereas no 
association was observed in females (158). Another study also 
demonstrated reduced odds of hip fractures with a high dietary 
intake of both total carotenoid and individual β‑carotene, 
β‑cryptoxanthin, and lutein/zeaxanthin intake, while the 
intake of α‑carotene and lycopene was not associated with the 
risk of hip fractures (159). Correspondingly, a meta‑analysis 
of epidemiological studies involving 140,265 subjects demon‑
strated that a high total carotenoid, as well as β‑carotene 
intake was associated with a 28% lower risk of hip fractures, 
while no association between circulating carotenoid and frac‑
ture risk was shown (160). Correspondingly, the meta‑analysis 
by Gao and Zhao (161) demonstrated a significant association 
between the dietary β‑carotene intake and a reduction in the 
risk of developing osteoporosis.

Serum β‑cryptoxanthin, lycopene and α‑carotene levels 
have been found to be associated with a concentration‑depen‑
dent increase in BMD in Chinese adults, with a more 
pronounced association in females (162). Correspondingly, 
in the European Prospective Investigation into Cancer and 
Nutrition (EPIC)‑Norfolk cohort, plasma α and β‑carotene 
levels were inversely associated with a risk of hip fractures in 
males (163).

Generally, the results of laboratory in vivo studies corre‑
spond to the epidemiological observations, consistent with 
adverse effects of both VA deficiency and overload on bone 
physiology. Specifically, VA deficiency has also been shown to 
be associated with impaired bone regeneration in mice due to 
the downregulation of BMP‑2 (164). At the same time, exces‑
sive all‑trans retinoic acid exposure (40 mg/kg/day) has been 
shown to result in reduced longitudinal bone growth in young 
rats through the alteration of growth hormone (GH)/insulin‑like 
growth factor 1 (IGF)1/IGFBP3 signaling (165). The intraperi‑
toneal administration of 10 mg/kg/day all‑trans retinoic acid 
(ATRA) has been shown to significantly promote testosterone 
deficiency‑induced bone loss (166). In addition, excessive VA 
intake (60 retinol activity equivalents µg/g chow) inhibits 
the loading‑induced increase in trabecular and cortical bone 
mass along with the downregulation of osteoblast‑specific 
genes (167).

These findings demonstrate that VA, as well as provitamin 
A carotenoid intake is associated with bone health, although 
this association appears to be non‑linear. Despite being rather 
contradictory, the existing epidemiological data demonstrate 
that both the deficiency and excess of VA may promote the risk 
of bone loss. The laboratory findings also demonstrate that VA 
metabolites may possess distinct effect on mechanisms associ‑
ated with bone formation.

A number of studies have demonstrated that the VA metab‑
olite, ATRA, significantly increases osteoblastogenesis and 
osteogenesis. Specifically, in rat bone marrow‑derived mesen‑
chymal stem cells, exposure to 10 µM ATRA was shown to 
promote osteogenic differentiation through the pregulation of 
osteogenic (ALP, BMP‑2, OSX, Runx2, OPN and OCN) and 
angiogenic [VEGF, hypoxia‑inducible factor‑1, Fms related 
receptor tyrosine kinase 3, angiotensin (ANG)‑2 and ANG‑4] 

gene mRNA expression, while in an in vivo model, ATRA 
injection (10 µM, 100 µl) into the distraction gap significantly 
improved bone consolidation and its properties  (168). The 
administration of 10 µm ATRA has been shown to promote 
the Wnt3a‑induced osteogenic differentiation of mesenchymal 
stem cells through the activation of PI3K/AKT/GSK3β 
pathway  (169). Both ATRA and 9‑cis retinoic acid at the 
concentrations of 5‑20  µM have been shown to promote 
the in vitro osteogenic differentiation induced by BMP‑9 in 
mesenchymal progenitor cells (170). The osteogenic differ‑
entiation of retinoic acid‑treated murine induced pluripotent 
stem cells has also shown to be at least partially mediated by 
Notch signaling (171).

It has also been demonstrated that ATRA promotes a shift 
from adipogenic to osteogenic differentiation. Specifically, 
1 µM retinoic acid‑induced osteoblastogenesis and the inhi‑
bition of adipogenesis in mesenchymal stem cells have been 
shown to be dependent on Smad3 upregulation with the subse‑
quent replacement of C/EBPβ from the Runx2 promoter (172), 
in agreement with earlier observation of the C/EBPβ‑induced 
inhibition of the 1 µM ATRA‑induced osteoblastogenesis in 
C3H10T1/2 cells  (173). It has been also demonstrated that 
1  µM RA promotes BMP‑2‑induced osteogenesis, while 
inhibiting BMP‑2‑induced adipogenesis with the suppression 
of adipogenic transcription factors, PPARγ and C/EBPs, thus 
being a key factor regulating the commitment of mesen‑
chymal stem cells into osteoblasts and adipocytes  (174). 
Moreover, 2.5 µM retinoic acid has been shown to enhance 
the osteogenic effect of BMP‑2 in human adipose‑derived 
stem cells (175). ATRA (1 µM) has been shown to promote 
the BMP‑9‑induced osteogenic transdifferentiation of 3T3‑L1 
preadipocytes through the activation of BMP/Smad and 
Wnt/β‑catenin signaling (176). It has been shown that 1 µM 
retinoic acid promotes the BMP‑2‑induced osteoblastic 
differentiation of preadipocytes through BMP‑RIA and 
BMP‑RIB signaling  (177). Correspondingly, retinoic acid 
has been shown to induce the osteogenic differentiation of 
stromal cells from both visceral and subcutaneous adipose 
tissue depots (178). Moreover, as previously demonstrated, 
in mouse embryonic fibroblasts, 0.4 µM ATRA promotes a 
shift to osteogenesis from rosiglitazone‑induced adipogenic 
differentiation through the upregulation of Smad1/5/8 phos‑
phorylation and Smad6 expression, resulting in the activation 
of BMP/Smad pathway (179). At the same time, it has also been 
observed that pharmacological concentrations of 1‑10 µM 
ATRA inhibit osteoblast proliferation, while increasing its 
differentiation (180). However, it is notable that premature 
osteoblast‑to‑preosteocyte transitioning induced by 1  µM 
ATRA may result in altered bone formation (181).

The osteogenic effects of retinoic acid have also been 
shown to be associated with RAR activation. Specifically, reti‑
noic acid (1 µM) has been shown to promote the osteogenesis 
of human induced pluripotent stem cells, a process dependent 
on RARa and RARb, but not on RARy signaling  (182). 
Correspondingly, it has been demonstrated that treatment 
with 20 µM ATRA increases the spreading of pre‑osteo‑
blasts on bio‑inert glass surfaces and its osteogenic activity 
through RARα and RARβ signaling (183). At the same time, 
Karakida et al (184) demonstrated that ATRA promoted the 
osteogenic transdifferentiation of myoblastic C2C12 cells by 



SKALNY et al:  VITAMINS IN BONE HEALTH AND OSTEOPOROSIS8

BMP‑2 in a concentration‑dependent manner at a range of 
8‑2,000 nM, while this effect was ameliorated by RARγ, but 
not RARα or RARβ inhibition.

In contrast to previously discussed observations, several 
laboratory studies have demonstrated the inhibitory effects of 
ATRA on osteogenesis. In particular, 1 µM ATRA has been 
shown to inhibit the osteoblastogenesis of the MC3T3‑E1 
pre‑osteoblast cell line (185). Furthermore, 0.5 µM retinoic 
acid has been found to significantly inhibit MC‑3T3 cell 
mineralization through the increased expression of the Wnt 
inhibitors, DKK‑1 and DKK‑2 (186), resulting in the down‑
regulation of Wnt signaling (187). It has also been shown that 
1 µM ATRA inhibits osteoblastogenesis induced by BMP‑2, 
BMP‑7 or heterodimer BMP‑2/7, with the latter being a more 
potent activator as compared to homodimers (188). In addi‑
tion, the inhibition of the osteogenic differentiation of mouse 
embryonic palate mesenchymal cells by 1 µM ATRA has been 
shown to be associated with the inhibition of BMPR‑IB and 
Smad5 mRNA expression (189,190).

The inhibitory effect of 1 µM ATRA on BMP‑2‑induced 
osteoblastogenesis has also been shown to be dependent on 
RARα signaling (191). These findings corroborate those of 
an earlier study by Nuka et al (192), establishing a key role 
for RARα and RARβ signaling activation in the inhibition 
of SV HFO osteoblast cell line mineralization in response to 
0.1 µM ATRA treatment. In addition, the exposure of C2C12 
myotubes to 10‑100 nM ATRA has been shown to induce the 
RAR‑dependent production of sclerostin, a protein possessing 
inhibitory effect on the Wnt/β‑catenin pathway (193).

The upregulation of IL‑1β expression through NF‑κB acti‑
vation and inflammasome formation may also contribute to the 
anti‑osteogenic effects of 1‑10 µM ATRA (194). These findings 
correspond to the observation that IL‑6 overproduction by 
human osteoblasts occurs even upon exposure to physiological 
(10 nM) and higher (up to 10 µM) ATRA concentrations (195).

Taken together, the existing studies demonstrate that ATRA 
at various concentrations can both promote and inhibit osteo‑
genesis, with ATRA at nanomolar concentrations inhibiting, 
and at micromolar concentrations activating osteoblasts (15). 
However, it has been suggested that the inhibitory effects on 
osteogenesis occur at higher exposure levels (196). Therefore, 
further studies are required to clarify the mode‑of‑action of 
ATRA in osteogenesis and to provide a solid rationale for 
adequate VA intake in vivo.

In addition to its impact on osteoblast physiology, VA is 
also involved in the regulation of bone resorption through the 
modulation of osteoclast activity. Specifically, retinoic acid has 
been shown to increase the proliferation of osteoclast progeni‑
tors, while inhibiting osteoclast differentiation by suppressing 
RANK/RANKL signaling (197) with the downregulation of 
NFATc1 (198), NFAT2, c‑Fos and MafB (199). These effects 
were shown to de dependent on RAR activation, with RARα 
signaling being the most effective (198). In another study, 1 
µM ATRA significantly inhibited BMP2/7‑induced osteoclas‑
togenesis through the downregulation of RANK and Nfatc1 
expression (200). It is also notable that not only ATRA, but 
also 9‑cis retinoic acid at a concentration of 1 nM, significantly 
inhibited calcitriol‑induced bone resorption (201).

In another study, retinoic acid was shown to increase peri‑
osteal bone resorption by increasing osteoclast differentiation 

through the RARα‑dependent increase in the RANKL/OPG 
ratio (202). The stimulation of osteoclast activity by retinoic 
acid was associated with an increased expression of cathepsin 
K  (203). In addition to osteoclast activation, retinoic 
acid‑induced bone damage has been shown to be associ‑
ated with osteocytic osteolysis, as evidenced by a reduction 
in mature osteoblast/osteocyte‑specific genes (Bglap2 and 
Ibsp), without any significant alteration of Runx2 mRNA 
expression (204). Therefore, these findings demonstrate that 
analogous to osteoblasts, the effects of ATRA on osteoclast 
proliferation, differentiation and functioning are likely 
bimodal.

In addition to VA and its metabolites, carotenoids have 
also been shown to promote osteoblast proliferation and 
differentiation (157). β‑cryptoxanthin has been shown to exert 
osteoprotective effects by promoting osteoblastogenesis and 
inhibiting osteoclastic bone resorption (205). It has been shown 
that β‑cryptoxanthin significantly increases the osteoblastic 
differentiation of MC3T3‑E1 cells with a significant increase 
in Runx2 mRNA expression (206). β‑cryptoxanthin‑induced 
osteoblast differentiation has been shown to be mediated by 
the activation of TGF‑β1‑induced Smad activation, being inde‑
pendent of BMP2‑Smad signaling (207). Both β‑cryptoxanthin 
and p‑hydroxycinnamic acid have been shown to inhibit basal 
NF‑κB activity in MC3T3 pre‑osteoblasts, whereas only 
p‑hydroxycinnamic acid significantly suppresses TNF‑induced 
NF‑κB activity (208). p‑Hydroxycinnamic acid ameliorates 
inhibitory effects of TNF‑α‑induced NF‑κB signaling on 
Smad‑mediated TGF‑β and BMP‑2 signaling (209).

As previously demonstrated, crocin at a concentration of 
40 µM promotes M2 macrophage polarization and increases 
the osteogenic differentiation of bone mesenchymal stem cells 
through the inhibition of p38 and c‑Jun N‑terminal kinase 
signaling (210). Similar to crocin, crocetin also induces the 
osteogenic differentiation of mesenchymal stem cells (211).

It has been demonstrated that 10 µM lycopene significantly 
promotes the osteogenesis of Saos‑2 cells through the activa‑
tion of WNT/β‑catenin and ERK1/2 pathways, while inhibiting 
RANKL mRNA expression (212). In ovariectomized rats, the 
daily intake of 10 mg/kg lycopene was found to significantly 
reduce bone loss associated with the upregulation of the osteo‑
genic genes, Sp7, Runx2, Bsp and Bglap (213), whereas the 
number of osteoclasts was reduced (214). In addition, lycopene 
derivatives, but not the intact molecule, significantly inhibit 
NF‑κB activation in osteoblastic cells (215) through the inhibi‑
tion of IκB kinase (IKK) activity and transcriptional activity 
of p65 through direct interaction with critical thiols (216).

Osteoclastogenesis is also considered as the target for 
carotenoid effects on bone health. Specifically, it has been 
shown that 0.1‑1 µM β‑cryptoxanthin significantly inhibits 
PTH, PGE2‑, 1,25‑dihydroxyvitamin D3‑, lipopolysac‑
charide‑, or TNFα‑induced osteoclastogenesis through the 
downregulation of RANKL and M‑CSF signaling (217). The 
downregulation of RANKL‑mediated osteoclastogenesis by 
5 µM β‑cryptoxanthin has been shown to be dependent on 
the suppression of the inhibitor of NF‑κB kinase β (IKK β) 
activity, suppressing NF‑κB activation (218). The anti‑osteo‑
clastogenic effect of β‑cryptoxanthin has also been shown 
to b associated with the promotion of caspase‑3‑mediated 
apoptosis (219). Correspondingly, in another study, dietary 
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β‑cryptoxanthin intake prevented osteoclastic bone resorp‑
tion in ovariectomized mice through interference with the 
RANKL pathway  (220). A similar protective effect was 
observed against inflammatory bone resorption in a mouse 
model of periodontitis (221).

In addition to β‑cryptoxanthin, other carotenoids have also 
been shown to modulate osteoclast functioning. It has been 
shown that β‑carotene (0.2 µM) significantly ameliorates 
RANKL‑induced NFATc1, c‑Fos and CTSK expression, as 
well as osteoclastic bone resorption through the inhibition of 
IκB phosphorylation, whereas ERK, JNK and p38 expression 
remain unaltered (222). Similarly, 50 µg/ml astaxanthin has 
been shown to inhibit Nε‑carboxymethyllysine‑induced osteo‑
clastogenesis through the inhibition of NF‑κB activation and 
subsequent downregulation of NFATc1 expression (223). In 
bone marrow cells, treatment with 30 µM lutein was shown 
to inhibit IL‑1‑induced RANKL‑mediated osteoclastogen‑
esis, while promoting osteogenesis in an osteoblast culture 
by increasing BMP‑2 and decreasing sclerostin mRNA 
expression (224).

In another study, 2.5  µM fucoxanthin was shown to 
suppress the osteoclastic differentiation of RAW264.7 cells by 
inducing apoptosis via caspase‑3 activation without a decrease 
in MC3T3‑E1 osteoblastic cell viability (225).

The role of VA in osteoporosis thus appears unclear. 
While multiple studies have demonstrated that the excessive 
dietary intake of VA and its accumulation in the organism is 
associated with a reduced BMD and osteoporosis, observa‑
tions in children and VA‑depleted subjects have demonstrated 
that its deficiency may also exert adverse effects on bone 
physiology. In vivo studies have demonstrated adverse effects 
of the excessive VA intake on bone health, while in vitro 
studies have been inconsistent with the epidemiological 
findings, indicating positive effects of VA at micromolar 
doses on osteogenesis, whereas lower nanomolar doses exert 
inhibitory effects. Specifically, it has been demonstrated 
that the effects of VA on bone formation are mediated by 
the modulation of BMP‑2 and Wnt/β‑catenin‑mediated 
osteogenesis. Other targets for the effects of VA in bones 
include the GH/IGF‑1 axis, RAR and Notch signaling, as 
well as the modulation of NF‑κB‑mediated inflammation. 
Similarly, the effects of VA on osteoclast formation and 
activity vary significantly from inhibition to stimulation, 
due to the differential modulation of RANKL signaling. 
These findings demonstrate that VA intake needs to be care‑
fully monitored in subjects who are at risk in order to avoid 
the hazardous effects of both hypo‑ and hypervitaminosis 
on bone health.

5. Vitamin C

VC plays a crucial role in bone physiology, exerting beneficial 
effects on trabecular bone formation, thereby being considered 
as a potential treatment modality for osteoporosis (226).

VC supplementation in post‑menopausal women has been 
shown to be associated with an almost 3% increase in BMD in 
multiple sites, while the highest BMD was observed in women 
using VC, estrogen and Ca2+ (227). A higher VC intake has 
also been shown to be associated with a 33% lower risk of 
developing osteoporosis (228).

These findings corroborate the results of a more recent 
meta‑analysis, demonstrating that a higher frequency of 
dietary VC intake was associated with a 34% lower prevalence 
of hip fractures (229). It has been shown that a 50 mg/day 
increase in VC intake is associated with a 5% decrease in the 
risk of hip fractures (230). The results of a 17‑year follow‑up 
demonstrated that VC supplementation resulted in lower rates 
of hip fractures (231). The results from the KNHANES IV 
(2009) study demonstrated a significant association between 
dietary VC intake and BMD only in vitamin D‑deficient 
elderly individuals (232).

Epidemiological findings have also demonstrated a posi‑
tive association between VC intake, circulating ascorbate 
levels and BMD  (233). In turn, a suboptimal plasma VC 
level is considered as a significant predictor of a low BMD in 
males (234). Despite the lack of significant effects of dietary 
VC intake, a normal plasma VC concentration has been shown 
to be associated with a higher BMD in post‑menopausal Puerto 
Rican women without estrogen therapy (235).

Laboratory in vivo studies have demonstrated that VC defi‑
ciency results in impaired osteogenesis in osteogenic disorder 
Shionogi rats  (236) associated with abnormal collagen 
formation in osteoblasts (237). In turn, VC supplementation 
improves BMD in vitamin‑C‑deficient Shionogi rats (238). 
Moreover, it has been shown that VC supplementation signifi‑
cantly increases bone quality in a model of ovariectomized 
osteoporotic rats through the stimulation of bone formation 
and the inhibition of its resorption (239,240). Correspondingly, 
VC deficiency has been shown to be associated with a risk of 
spontaneous bone fractures due to the inhibition of osteoblast 
differentiation and increased PPAR‑γ‑dependent adipogenic 
transition (241).

The promotion of bone formation by VC appears to be 
mediated by the modulatory effects of VC on osteoblast differ‑
entiation and activity. Specifically, VC significantly increases 
osteoblast differentiation in a suspension of mononuclear 
cells  (242), in association with increased type  I collagen 
production and extracellular matrix mineralization (243). VC 
promotes both the proliferation and osteoblastic differentia‑
tion of MC3T3‑E1 type pre‑osteoblast cells (244). VC‑induced 
osteogenic differentiation has been shown to affect the 
expression of >15,000 genes that are related to cell growth, 
morphogenesis, metabolism, cell communication and cell 
death in addition to osteoblast‑specific genes (245). It is also 
notable that VC increases the phosphate‑induced osteoblastic 
transformation of vascular smooth muscle cells by promoting 
intracellular Ca2+ deposition (246), thus increasing the risk of 
vascular calcification.

It has been demonstrated that low doses of VC signifi‑
cantly promote osteoblast differentiation through the 
upregulation of RUNX2 and SPP1 gene expression in 
MG‑63 cells, whereas high doses of VC induce apoptotic cell 
death (247). The osteogenic effects of VC have been shown 
to involve the activation of BMP‑2 and Wnt/β‑Catenin/ATF4 
signaling (248). VC also reduces the number of senescent 
cells by increasing the proportion of cells with proliferative 
capacity (249). The activation of casein kinase 2 involved 
in the regulation of bone formation may also be involved 
in the osteogenic effects of ascorbate osteoblast‑like 
(MG63) cells (250). Osteoblastogenesis has been shown to 
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be mediated by VC‑induced OSX expression through the 
activation of PHD and subsequent proteasomal degradation 
of OSX gene transcriptional repressors (251). The activation 
of osteogenesis by VC has been shown to involve its direct 
interaction with PHD2 (252).

The osteogenic effects of VC are also dependent on 
microtubule plus‑end‑binding protein 1 expression with the 
subsequent activation of β‑catenin expression (253). Of note, 
VC has been found to exert osteogenic effects at the begin‑
ning of bone formation, although at later periods (9 days) it 
may exert adverse effects (254). It has also been demonstrated 
that VC induces a shift to osteogenesis and myogenesis from 
adipogenesis in mesoderm‑derived stem cells, at least partially 
through the p38MAPK/CREB pathway (255). A similar effect 
mediated by the depletion of the cAMP pool was observed in 
the OP9 mesenchymal cell line (256).

Ascorbic acid 2‑phosphate, a long‑acting VC derivative, 
has been shown to promote osteoblast differentiation, in 
contrast to the inhibitory effects of VC in a culture of MG‑63 
cells (257). Correspondingly, ascorbate‑2‑phosphate has been 
shown to increase the expression of MMP‑2 and MMP‑13, 
whereas the ascorbic acid‑induced expression of membrane 
type1‑MMP has been observed only at the early stages of 
differentiation (258).

Epigenetic mechanisms may also underlie the modulatory 
effects of VC on osteogenesis. Specifically, VC‑induced osteo‑
genic differentiation is tightly associated with H3K9me3 and 
H3K27me3 demethylation and 5‑hydroxy‑methyl‑cytosine 
levels (259).

VC also significantly modulates bone resorption through 
the regulation of osteoclastogenesis and osteoclast activity. 
Specifically, VC has been shown to reduce RANKL‑induced 
osteoclastogenesis in vitro (260) through the redox‑dependent 
inhibition of NF‑κB signaling (261). Correspondingly, it has 
been shown that VC significantly inhibits the RANKL and 
NF‑κB expression‑associated increase in osteoclast differen‑
tiation in rats fed a high‑cholesterol diet (262). In turn, VC 
deficiency has been shown to increase bone resorption and 
osteoclastogenesis via the ERK‑dependent upregulation of 
RANK, c‑jun and c‑fos expression (263).

VC has also been shown to be essential for appropriate 
osteoclastogenesis by increasing RANKL mRNA expres‑
sion  (264,265). VC has been shown to be essential for 
osteoclast differentiation by increasing preosteoclast matu‑
ration and improvement in cell viability (266). In addition, 
VC promotes glycerophosphate‑induced osteoclast differ‑
entiation by increasing RANKL‑induced NFATc1, c‑fos 
and COX‑1 expression (267). It is notable that VC promotes 
osteoclast formation only at earlier stage of osteoclasto‑
genesis, whereas at the late stage, it increases osteoclast 
death (268).

The existing epidemiological studies demonstrate that a 
higher VC intake is associated with a lower risk of osteoporosis 
and fractures, that may be mediated by the osteogenic effects of 
VC via the activation of BMP‑2 and Wnt/β‑catenin signaling. 
Epigenetic effects may also underlie the positive effects of 
VC on osteoblast differentiation. Despite the observation of 
inhibitory effects of VC on RANKL and NF‑κB‑associated 
osteoclastogenesis, VC has been shown to be essential for 
appropriate osteoclast formation.

6. Group B vitamins

Group B vitamins represent a group of structurally hetero‑
geneous water‑soluble molecules performing cofactor roles 
for a plethora of enzymes involved in human energy metabo‑
lism (269), including bone physiology and protection against 
osteoporosis (270). However, certain contradictions regarding 
the protective effects of group B vitamins exist (271).

An analysis of the Framingham Offspring Osteoporosis 
Study (1996‑2001) data demonstrated that males and females 
with plasma vitamin B12 levels <148  pM are character‑
ized by decreased hip and spine BMD, respectively  (271). 
Correspondingly, an insufficient B12 intake has been consid‑
ered as a risk factor for osteoporosis in vegans  (272). A 
meta‑analysis study by Zhang et al (273) demonstrated that 
both homocysteine (Hcy) and B12 levels were found to be 
elevated in post‑menopausal osteoporotic women. In addition, 
in Moroccan women, plasma B12 levels, as well as the circu‑
lating Hcy concentration, were inversely associated with hip 
BMD (274).

A low (<19.2 µg/l) serum B6 level has been found to be 
associated with a 61% higher risk of developing osteoporosis, 
while circulating vitamin levels are inversely associated with 
bone turnover biomarkers (275). A higher dietary B6 intake 
has been shown to be associated with a 22% lower risk of 
hip fracture sin the Singapore Chinese Health Study (276). 
Concomitantly, Li et al  (277) demonstrated that increased 
circulating vitamin B6 levels were associated with a higher risk 
of ankle fractures in osteoporotic patients.

Folic acid levels have been found to be significantly associ‑
ated with BMD following adjustment for Hcy concentrations 
and other confounders (278). It is considered that supplementa‑
tion with folic acid at a dose of 0.5‑5 mg may be useful for the 
improvement of BMD in patients with low folic acid levels or 
hyperhomocysteinemia (279).

Several studies have investigated combined group B 
vitamin supplementation. It was previously demonstrated 
shown that the 2‑year group B vitamin (folic acid, B6, B12, B2) 
supplementation in subjects with a low B12 status prevented 
a significant reduction in BMD at the femoral neck and 
hip (280). In turn, circulating plasma folic acid and B12 levels 
have been shown to be directly associated with BMD and bone 
strength in post‑menopausal Chinese‑Singaporean women, 
respectively (281). Low serum folic acid and B6, but not B12 
levels, have been shown to be associated with lower bone 
trabecular number and thickness in subjects who underwent 
hip arthroplasty (282).

The results of a recent meta‑analysis demonstrated that 
severe folic acid, but not B6 or B12 deficiency, was associated 
with an increased risk of fractures in the elderly (283). Other 
studies have failed to reveal an association between serum B12 
or folic acid levels with BMD (284,285) or the vertebral frac‑
ture rate (286), although a reduction in the Hcy concentration 
has been observed (287).

Hcy affects the efficacy of group B vitamin supplementa‑
tion. Specifically, although long‑term vitamin B12 and folic acid 
supplementation do not reduce the risk of osteoporotic frac‑
tures (288) or improve BMD (289), in the general cohort of the 
B‑PROOF trial, vitamin supplementation reduced the number 
of fractures in subjects with hyperhomocysteinemia (288). 
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Nonetheless, no effect of folic acid, vitamin B6 and B12 supple‑
mentation on fracture risk or bone turnover biomarkers in 
hyperhomocysteinemic subjects has been observed (290).

Genetic factors also significantly modulate the asso‑
ciation between the group B vitamin status and bone health. 
Ahn et al (291) demonstrated that 3'‑UTR polymorphisms of 
vitamin B‑related genes, transcobalamin II, reduced folate 
carrier protein 1 and thiamine carrier 1, and particularly 
CD320 (transcobalamin II receptor), were associated with 
osteoporosis and osteoporotic spinal fractures in post‑meno‑
pausal women. The association between vitamin B levels and 
BMD was also shown to be modified by genetic variants in the 
1‑carbon methylation pathway (292).

Laboratory studies have also demonstrated that group 
B vitamins have a significant impact on bone physiology 
and osteoporosis. Specifically, folic acid has been shown to 
significantly improve bone architecture and prevent bone 
loss through the reduction of osteoclast number via AMPK 
activation and the upregulation of Nrf2 signaling in high‑fat 
diet‑induced osteoporosis (293). It has been shown that folic 
acid supplementation significantly reduces the inhibitory 
effects of dexamethasone on vertebral osteogenesis through 
the upregulation of the TGF‑β signaling pathway, with a 
subsequent increase in p‑Smad2/3, Runx2 and Osterix expres‑
sion in chick embryos (294). Similar beneficial effect of FA 
supplementation on bone density was observed in a model 

Figure 3. The proposed mechanisms underlying the osteoblastogenic effects of vitamins. Vitamins E, K2 and C promote osteogenesis through the upregulation 
of BMP/Smad and Wnt/β‑catenin signaling. In addition, vitamin E in the form of tocopherol stimulates TGFβ signaling through Smad2. In turn, vitamin A 
exerts both inhibitory and stimulatory effect on BMP‑ and Wnt/β‑catenin‑mediated osteogenesis, and the effect appears to be dependent on the exposure dose. 
BMP, bone morphogenetic protein; DKK, Dickkopf‑related protein; APC, adenomatous polyposis coli; LRP, low density lipoprotein receptor‑related protein.
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of cyclosporine‑induced bone loss  (295). Folic acid also 
ameliorated the adverse effect of homocysteine on osteoblast 
proliferation, differentiation and mineralization through 
inhibition of PERK‑activated ERS (296). Folic acid potenti‑
ated osteoblastogenic effect of hydroxyapatite nanoparticles, 
as evidenced by a more profound RUNX2 expression in 
human mesenchymal stem cells (297). At the same time, high 
maternal folic acid intake was shown to reduce BMD in the 
offspring (298).

The essentiality of B12 for bone physiology was clearly 
demonstrated in B12‑deficient conditions. Specifically, the 
reversal of B12 deficiency prevented the reduction of cortical 
and trabecular bone mass loss in a genetic model of B12 defi‑
ciency (Gif‑/‑) in mice (299). It has also been demonstrated 
that B12‑deficiency‑induced osteoporosis may be medi‑
ated by an altered taurine synthesis and impaired growth 
hormone/insulin‑like growth factor 1 (GH/IGF1) pathway 
resulting in osteoblast dysfunction  (300). In addition, B12 
deficiency results in a significant increase in the osteoblastic 
secretion of Hcy and methylmalonic acid, that exert stimulatory 
effects on osteoclastogenesis (301). These findings corroborate 
earlier observations on the stimulatory effects of Hcy on osteo‑
clast activation (302). B12 deficiency has also been shown to be 
associated with increased osteoclast bone resorption (303).

B6 vitamin deficiency has been shown to be associated 
with osteoblast dysfunction due to excessive cortisol produc‑
tion (304). At the same time, another study on vitamin B6 
deficiency did not note an affect osteoblast mineraliza‑
tion (305).

Vitamin B5 has been shown to promote RANKL‑induced 
osteoclastogenesis at low doses via the upregulation of the 
PI3K/Akt pathway in pre‑osteoclasts, whereas higher vitamin 
doses decrease osteoclast differentiation, resulting in reduced 
bone resorption, in association with a decrease in ROS 
generation and the stimulation of the expression FOXO1/2 
and Nrf2 (306), known as one of the key regulators of antioxi‑
dant response (307). Vitamin B1 has been shown to exert an 
inhibitory effect on RANKL‑mediated osteoclast differentia‑
tion (308).

It has been shown that the reduction of folic acid, B6, and 
B12 levels significantly increases osteoclast bone resorption 
activity, as evidenced by the stimulation of tartrate‑resistant 
acid phosphatase and cathepsin K activity (309).

Taken together, although B group vitamins have been shown 
to play a crucial role in bone physiology, as demonstrated in 
deficiency models, epidemiological data on the efficiency 
of vitamin supplementation are inconclusive. However, the 
beneficial effects of folic acid and B12 supplementation on 

Figure 4. Regulatory effect of vitamins on osteoclastogenesis through the modulation of the RANKL/OPG ratio. Vitamins E, K2, A, B1, B6, B12 and folic 
acid inhibit osteoclastogenesis through the downregulation of RANKL production and subsequent RANK signaling. In addition, vitamins E, K2, A and C 
significantly increase the production of OPG that antagonizes RANKL/RANK signaling. In turn, vitamin B5 and particularly, ascorbic acid (VC) stimulate 
and inhibit RANKL‑mediated osteoclastogenesis dependent on the dose. The inhibition of osteoclastogenesis due to a reduced RANKL/OPG ratio results in 
inhibition of osteoclast formation with subsequent decrease in bone resorption. The dotted line is indicative of indirect effect, the ‘T’ line indicates inhibition, 
and the black arrow line indicates stimulation. RANKL, receptor activator of nuclear factor kappa‑B ligand; OPG, osteoprotegerin.
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bone quality have been reported to be critical in subjects with 
insufficient vitamin intake.

7. Conclusions

Existing data demonstrate that an adequate vitamin intake is 
essential for bone health, while vitamin deficiency is asso‑
ciated with an increased risk of developing osteoporosis. 
Specifically, the intake of vitamins E, K2 and C has been 
shown to be associated with increased BMD and a reduced 
risk of fractures. In turn, the excessive intake of vitamins 
can also have adverse effect on bone health and osteopo‑
rosis, as clearly demonstrated for VA. The observed effects 
of vitamins on the risk of osteoporosis have been shown to 
be mediated via mechanisms that regulate bone formation 
and resorption. VE (tocopherols and tocotrienols), VK2 
(menaquinones 4 and 7) and VC have been shown to promote 
osteoblast development via the upregulation of BMP/Smad 
and Wnt/β‑catenin signaling. Tocopherol also contrib‑
utes to osteoblastogenesis through the stimulation of the 
TGFβ/Smad pathway. The VA metabolite (ATRA) appears to 
exert both inhibitory and stimulatory effects on BMP‑ and 
Wnt/β‑catenin‑mediated osteogenesis at nanomolar and 
micromolar concentrations, respectively (Fig. 3). However, 
these observations are contradictory to those of epidemio‑
logical studies demonstrating adverse effects of the excessive 
intake of VA on bone health. In addition to these mechanisms, 
the upregulation of PI3K/Akt/mTOR signaling, the inhibition 
of osteoblast apoptosis and ferroptosis, the improvement of 
redox homeostasis through SIRT1/Nrf2 and other pathways, 
as well as the inhibition of NF‑κB signaling, may contribute 
to higher osteoblast viability and osteogenesis. In addition, 
the osteogenic effects of certain vitamins have been shown 
to be mediated by the modulation of the effects of hormones, 
including insulin, GH and PTH on bone physiology.

In addition to increased osteoblast proliferation and 
differentiation, vitamins are involved in the regulation of bone 
resorption through the modulation of osteoclast development 
and activity (Fig. 4), thus increasing the ratio between osteo‑
blast and osteoclast activity. Both lipid‑soluble vitamins E, 
K2, A, and water‑soluble vitamins B1, B6, B12, C and folic 
acid significantly reduce RANKL production, thus reducing 
the RANKL/OPG ratio and RANKL/RANK signaling with 
a subsequent anti‑osteoclastogenic effect. Notably, VC has 
been shown to be essential for osteoclast development, and 
its effect on osteoclastogenesis has been shown to be depen‑
dent on the dose and the stage of cell development, as also 
observed for vitamin B5. In addition, VK2 has been shown to 
prevent vascular calcification by activating MGP through its 
carboxylation, thereby directing Ca from the vascular wall to 
its deposition in bones.

In view of the epidemiological and laboratory findings, 
it appears that antioxidant group E vitamins, particularly in 
the form of α‑tocopherol and VC should be considered as 
effective micronutrients for the reduction of osteoporosis and 
to lower the risk of adverse effects. Although VK2 exerts a 
positive effect on bone formation through the modulation of 
both osteoblast and osteoclast activity, as well as a reduc‑
tion in vascular calcification and the promotion of calcium 
deposition in bones, its intake should be closely monitored in 

subjects at a higher risk of hypercoagulation due to its role 
in blood clotting. It appears that the therapeutic window of 
VA for improved bone health and quality is rather narrow, 
and both insufficient and excessive VA intake reduces bone 
quality; thus, it should be supplemented only in subjects with 
VA deficiency. The beneficial effects of folic acid and B12 
supplementation on bone health are also likely to be inherent 
to subjects with insufficient vitamin intake, thus maintaining 
optimal B group vitamin dietary intake is also essential for 
prevention of osteoporosis. In view of the existing data, further 
studies are required to unravel the effects and mechanisms 
underlying the impact of various forms and doses of vitamins 
on bone physiology, as well as dependence of these effects on 
baseline vitamin status.
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