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Abstract. Coronavirus disease 2019 (COVID‑19), a systemic 
illness caused by severe acute respiratory distress syndrome 2 
(SARS‑CoV‑2), has triggered a worldwide pandemic with 
symptoms ranging from asymptomatic to chronic, affecting 
practically every organ. Melatonin, an ancient antioxidant 
found in all living organisms, has been suggested as a safe and 
effective therapeutic option for the treatment of SARS‑CoV‑2 
infection due to its good safety characteristics and 
broad‑spectrum antiviral medication properties. Melatonin 
is essential in various metabolic pathways and governs physi‑
ological processes, such as the sleep‑wake cycle and circadian 
rhythms. It exhibits oncostatic, anti‑inflammatory, antioxi‑
dant and anti‑aging properties, exhibiting promise for use in 
the treatment of numerous disorders, including COVID‑19. 
The preventive and therapeutic effects of melatonin have 
been widely explored in a number of conditions and have 
been well‑established in experimental ischemia/reperfusion 
investigations, particularly in coronary heart disease and 
stroke. Clinical research evaluating the use of melatonin in 
COVID‑19 has shown various improved outcomes, including 
reduced hospitalization durations; however, the trials are 
small. Melatonin can alleviate mitochondrial dysfunction in 
COVID‑19, improve immune cell function and provide anti‑
oxidant properties. However, its therapeutic potential remains 

underexplored due to funding limitations and thus further 
investigations are required.
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1. Introduction

Severe acute respiratory coronavirus 2 (SARS‑CoV‑2) is the 
causative agent of the viral disease known as coronavirus 
disease 2019 (COVID‑19). This illness was first identified 
in December 2019 in Wuhan, China, and has since spread 
throughout the globe, culminating in a pandemic (1‑3). 
COVID‑19 is a systemic disease that may present in a broad 
variety of clinical manifestations, ranging from patients who 
are asymptomatic to those who have significant respiratory 
symptoms and even conditions that are life‑threatening (3‑5). 
There are several underlying mechanisms and interactions 
with pre‑existing conditions, such as obesity among others, 
that drive the pathogenesis of the disease, which includes the 
activation or dysregulation of localized (for example, vascular) 
and widespread inflammation, ultimately resulting in the 
failure of several organs and eventually, mortality (2,4,6‑16).

With the pandemic now characterized passed the 
acute phase, attention is shifting to post‑acute sequelae of 
COVID‑19 (PASC), is often referred to as ‘long COVID’ 
and possible preventative and therapeutic approaches are 
warranted (17,18). PACS comprises from a variety of symp‑
toms and clinical manifestations, which may include persistent 
tiredness, respiratory symptoms (including dyspnea, cough, 
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chest tightness), joint rigidness, impaired smell and headache, 
whereas respiratory, cardiovascular, neurological, cognitive, 
psychiatric and gastrointestinal manifestations continue to be 
the most common and potentially gravest, presentations of 
PASC (17,19‑21). Recent evidence suggests that a number of 
these manifestations may be linked to an unfavorable impact 
of the disease on the mitochondrial function of various tissues 
and organs (18,22).

Considering the numerous mechanisms and patho‑
physiological processes that spread from the deregulation 
of the immune system in acute COVID‑19 and the potential 
mitochondrial basis of long COVID, an ideal and efficient 
therapeutic option could be a molecule which functionally 
behaves as a ‘Swiss Army Knife’, such as melatonin (23,24). 
Indeed, since the SARS‑CoV‑2 was classified as a pandemic, 
numerous studies have proposed that the use of melatonin 
should be investigated as a treatment option that is both safe 
and likely to be effective with regard to treating the infec‑
tion (17,25‑27). Its usage is justified not just by its superior 
safety profile, but also from its innumerable beneficial actions 
as already reviewed extensively elsewhere (27‑30) and it has 
been demonstrated to even possess broad‑spectrum antiviral 
drug characteristics (31,32). Moreover, various potentially 
harmful and costly repurposed medicines, such as colchicine, 
glucocorticoids, remdesivir and several others, have been 
advocated for or utilized as therapeutic options (25,27,33‑37). 
Additionally, despite their importance, even the presently 
available vaccinations have major adverse effects on occa‑
sion (38,39). Furthermore, as the virus has evolved, the 
efficiency of the immunizations has reduced, several strains 
have already been found, and more are expected to emerge, 
reducing the efficacy of vaccinations even further (40). All 
these factors underlie the need for further therapeutic options 
despite the various preventive and already utilized medicinal 
options.

The present review provides a summary of the features 
of melatonin that provide support to its use in the treatment 
and/or prevention of SARS‑CoV‑2 infection and its complica‑
tions. The present review initially presents several actions of 
melatonin in health and disease, followed by the key patho‑
physiological mechanisms of COVID‑19 and the potential 
mechanisms through which melatonin would interact and 
mitigate them, with a focus on long COVID and the mitochon‑
drial functions of melatonin.

Finally, the results of the available clinical trials exam‑
ining the use of melatonin in individuals with COVID‑19 are 
summarized, and future steps on further examining the use of 
melatonin are proposed.

2. Melatonin in health and disease

Melatonin is an ubiquitous molecule that can be found in all 
living organisms of the animal kingdom, with traces even 
found in higher plants, such as fruits, seeds and leaves. The 
term ‘melatonin’ originates from the Greek words ‘melas’, 
which means black or dark, and ‘tonos’, which means color or 
tune. Melatonin is ultimately used to describe the hormone that 
is responsible for darkness (41‑44). It has been preserved over 
the course of evolution, perhaps for these and numerous other 
additional features, and it is regarded to be an evolutionarily 

old antioxidant, as it has the ability to scavenge free radicals 
and stimulate antioxidant enzymes (44‑47). Melatonin is 
primarily synthesized and secreted (predominantly released 
at night) by the pineal gland via the process of hydroxylation 
of the essential amino acid tryptophan, whereas tryptophan 
hydroxylase is responsible for the formation of 5‑hydroxy‑
tryptophan (42,43,45,47‑49). Serotonin, also known as 
5‑hydroxytryptamine, is the neurotransmitter that is produced 
as a result of this process. Melatonin is the immediate precursor 
of serotonin (42,43,45,47,48). Other organs, including the 
retina, kidneys, gastrointestinal system, skin and lymphocytes, 
produce a modest amount of melatonin (42,43,45,47,48). 
The role of melatonin in various biosynthetic metabolic 
pathways is evident, with different species having distinct 
biosynthetic pathways and genes that encode the enzymes 
involved in the process of its biosynthesis (42,43,45,47,48). 
Hydoxyindole‑O‑methyltransferase, an enzyme that is indi‑
rectly controlled by the photo‑neural system, is responsible 
for regulating the production of melatonin (42,43,45,47,48). 
Melatonin is primarily synthesized at night and is bound 
to albumin and orosomucoid glycoprotein and through the 
process of crossing the blood‑brain barrier, it is able to go to 
all tissues in the body and regulate brain function (43,50,51). 
Melatonin production peaks at 3 months of age and decreases 
by 80% by the adult stage (43).

Melatonin is primarily considered to govern physiological 
processes, such as circadian rhythms in humans, the sleep‑wake 
cycle, and it may be used as a natural sleep aid (43,45,52‑54). 
It is a pleiotropic hormone that regulates several biological 
processes, including the release of other hormones, apoptosis 
and immunological responses (32,49,55,56). The effects 
of melatonin are mediated in various cells via either the 
melatonin receptors type 1 and type 2, G‑protein coupled 
(membrane‑independent pathway) or indirectly (membrane 
independent) with nuclear orphan receptors from either the 
RAR‑related orphan receptor α/Z receptor family or through 
other pathways, as extensively reviewed elsewhere (57). The 
oncostatic, anti‑inflammatory and antioxidant characteris‑
tics of melatonin indicate that it may have potential use in 
the treatment of a variety of disorders (32,43,58). Both the 
preventative and therapeutic benefits of melatonin have been 
the subject of substantial research in a variety of neuro‑
logical conditions, including Alzheimer's disease, Parkinson's 
disease, Huntington's disease, amyotrophic lateral sclerosis, 
multiple sclerosis and epilepsy (47,59‑62). In lipopolysaccha‑
ride‑induced depression, melatonin has been shown to exert 
antidepressant effects, which are mediated via the regulation 
of autophagy (63). Additionally, it exhibits anti‑aging prop‑
erties and has the potential for use in the management and 
treatment of age‑related disorders in human beings (55,64,65).

Melatonin has been widely investigated for its anti‑prolif‑
erative and anti‑apoptotic properties on cancer cells, revealing 
its oncostatic effects. Melatonin also reduces the loss of cells, 
which is a significant benefit (66,67). Melatonin, which has 
been found in both in vitro and in vivo studies, has been shown 
to inhibit the development of tumors through membrane‑inde‑
pendent and membrane‑dependent mechanisms. Melatonin 
has an effect on cancer during the initiation phase, such as 
through DNA repair, and in the development, progression 
and metastasis phases, of the tumorigenesis process (66‑68). 
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Melatonin has potent anti‑angiogenic, anti‑proliferative and 
ultimately anti‑metastatic properties that may be used in 
the treatment of a wide range of malignancies, particularly 
those that have a high risk of cancer spreading to other parts 
of the body. Additionally, it exerts synergistic effects with 
conventional therapy, which increases the vulnerability of 
cancer cells to apoptosis (66‑68). Melatonin significantly 
reduces the adverse effects of cardiotoxic drugs in patients 
with cancer and has been shown to have a beneficial effect 
on coagulopathy (49). Melatonin has been found to improve 
cardiac function and lower blood pressure in patients who have 
hypertension, according to clinical data from human studies 
and various lines of evidence from animal studies, which have 
been reviewed elsewhere (52,60,69‑71). Melatonin, a substance 
that neutralizes free radicals, has been utilized to mitigate 
the harmful effects of certain chemical compounds, such as 
methamphetamine (42,50,60,72‑74). The use of melatonin as 
a possible anti‑viral drug for the treatment of viral illnesses, 
such as Ebola and COVID‑19 has been suggested (27,31,75). 
As extensively reviewed elsewhere (31), melatonin exhibits 
a plethora of potential antiviral actions in various viral 
models (31,75), including the regulation of viral phase 
separation and epitranscriptomics in long COVID‑19 (17).

Studies have indicated that the anti‑inflammatory proper‑
ties of melatonin involve suppressing interferon (IFN)‑α, 
tumor necrosis factor α (TNF‑α), interleukin (IL)‑6 and 
IL‑8, inhibiting Janus kinase (JNK) phosphorylation and 
monocyte chemoattractant protein‑1, and promoting protein 
degradation for tight junction integrity, according to numerous 
studies (56,76‑81). During the catastrophic hemorrhage 
that occurs during the late phase of Ebola virus infection, 
melatonin plays a crucial role in preserving the integrity 
of the blood vessels and shielding endothelial cells from 
damage (31,75,78,82,83). It also exhibits various biological 
activities, such as neuroprotective and immunomodulatory 
effects, regulatory effects on reproduction, tumor preventive 
effects, protective effects on gastrointestinal function and 
anti‑aging effects (45,84).

Melatonin is also a key factor in the regulation of energy 
homeostasis, which includes the regulation of body weight, 
insulin sensitivity and glucose tolerance of the body (45,85). 
It regulates energy metabolism, affecting intake, flow and 
expenditure in the energy balance, which in turn may be 
critical for preventing a variety of dysmetabolic conditions, 
particularly obesity, which in turn can affect the outcome 
of patients with COVID‑19 (11,86‑89). In addition to this, 
it synchronizes the needs for energy metabolism with the 
daily and yearly cyclical environmental photoperiod by 
means of its chronobiotic and seasonal effects (45,85). In 
experimental ischemia/reperfusion research, particularly 
in cases of myocardial infarction and stroke, melatonin has 
been shown to successfully prevent oxidative damage and the 
pathophysiological repercussions of such damage are essen‑
tial (43,82,90,91). Of utmost importance is to further present 
the free radical scavenging properties of melatonin, as these 
protect against mitochondrial DNA damage induced by reac‑
tive oxygen species (ROS) displaying another of its significant 
effects on mitochondrial homeostasis (24,92,93). In preclinical 
studies, the administration of melatonin has been shown to 
increase the activity of several antioxidant markers/enzymes, 

including glutathione peroxidase and superoxide dismutase 2 
(SOD2). The latter was achieved by promoting the function 
of sirtuin 3, that deacetylates SOD2, essentially facilitating 
its activation (24,92,94‑97). Whether melatonin is present in 
the mitochondria has been debatable (24,92); however, experi‑
mental evidence demonstrates up to 100‑fold higher levels of 
melatonin within the mitochondria post‑administration on 
mitochondrial membranes (98). It appears that the highest 
concentration of melatonin occurs in the mitochondria, where 
the highest amount of ROS and oxidative stress occur (99). 
High amounts of melatonin in the mitochondria may be due 
to oligopeptide transporters 1/2 or mitochondria generating 
their own melatonin, with research indicating the existence 
of such enzymes in brain mitochondria (92,94,100‑102). 
The effects of melatonin on mitochondria may be mediated 
via MT1/2 receptors, resulting in decreased ROS genera‑
tion, higher antioxidant capabilities, and therefore, in less 
neural apoptosis, activating nuclear factor erythroid 2‑related 
factor 2, as shown in preclinical models (24,92,103,104). 
Melatonin additionally prevents stress‑induced cytochrome c 
release from mitochondrial outer membranes (100). Finally, 
melatonin appears to increase classes of oxidative phosphory‑
lation (OXPHOS) proteins, thereby preventing damage (105). 
All these mitochondria‑related features of melatonin are 
of key relevance, apart from the acute phase of COVID‑19, 
which is strongly associated with oxidative stress, but also 
long COVID, which will be discussed in the following section. 
Based on novel data, melatonin is related to the mitochondrial 
dysfunction/downregulation of vital mitochondrial markers. 
The physiology of melatonin is summarized in the schematic 
diagram in Fig. 1.

3. Pathophysiology and long‑term repercussions of 
COVID‑19

Although individuals with COVID‑19 often have modest symp‑
toms, 20% develop substantial to severe illness that requires 
hospitalization (106). The most common include respiratory 
system abnormalities; however, several other organs may 
also be affected (3,7,10‑12,33,34). The features of the host, 
viral dynamics and immune response are associated with the 
severity of the disease and in general, severe COVID‑19, as 
well as a higher mortality rate are linked to an older age, high 
body mass index, and comorbidities such as cardiovascular 
diseases, diabetes or cancer (3,8,10,11,87,107,108).

The pathophysiological symptoms of COVID‑19 are 
partly mediated by the cell entrance of the virus, which 
is enhanced by the binding of the viral spike peptides to 
the angiotensin converting enzyme 2 (ACE2) receptors in 
diverse organs (2,7,8,109). In humans, ACE2 is expressed in 
numerous organ systems and tissues, including the lungs (e.g., 
the pneumocytes of alveolar sacs), hepatic, cardiac tissue, 
kidney, gastrointestinal endothelium, adipose tissue (AT) and 
vascular endothelium (3,49,110,111). This wide distribution 
likely explains the multisystem involvement of the infection, 
while also enhancing the magnitude of the illness in patients 
afflicted by SARS‑CoV‑2 (49). Interstitial pneumonia, the 
most prevalent lung involvement in patients with COVID‑19, if 
left untreated, may lead to a hypoxic status, resulting in acute 
respiratory distress syndrome and/or systemic inflammatory 
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response syndrome and fatal multiorgan failure (3,6,13,15,37,
108,112,113). These sepsis‑related consequences occur from 
a pathophysiological perspective, have the same underlying 
backgrounds, ignited by the cytokine storm and hyperinflam‑
matory statuses with significant oxidative damage caused by 
the reaction of the host to SARS‑CoV‑2 (49,114).

It is possible that the widespread extrapulmonary damage 
observed in patients with COVID‑19 may be attributed to 
the presence of ACE2 receptors on cells other than those 
that lining the respiratory alveoli (113). Other organ involve‑
ment results in symptoms that are particular to the organ; for 
example, gastrointestinal involvement may cause symptoms 
such as nausea, vomiting, diarrhea and abdominal pain (113). 
Hepatic damage, as evidenced by increased levels of circu‑
lating liver enzymes, is also prevalent (3). There are several 
symptoms that may be associated with peripheral and central 
nervous system involvement, and these include headaches 
and dizziness, hyposmia or anosmia (indicative of encepha‑
lopathy), neuralgia and Guillain‑Barré syndrome (115,116). 
Hospitalized patients are more likely to experience thrombo‑
embolic events, which have been established as an independent 
risk factor for a poor prognosis, and acute coronary modalities, 
cardiomyopathies, several types of arrhythmias, pericarditis 
and various thromboembolic events (49,117). Infections 
caused by SARS‑CoV‑2 may also result in coagulopathies, 
thrombocytopenia being the most prevalent, which play a 
crucial role in the development of extrapulmonary complica‑
tions (8,49). In critically ill patients, deep venous thrombosis 
and/or pulmonary embolism are frequent, with pulmonary 
embolism being more prevalent in patients in intensive care 
units (49). Inflammation, immunological responses, coagula‑
tion cascades and the dysregulation of the renin‑angiotensin 
system may cause acute kidney damage in 25% of hospitalized 
patients (8,49,118). Finally, AT from individuals with obesity 

is hypothesized to exhibit higher amounts of ACE2, perhaps 
serving as a SARS‑CoV‑2 repository with postponed viral 
shedding and may presumably contribute to long COVID (3).

Long COVID refers to patients who have experienced persis‑
tent impairments following infection with COVID‑19, including 
various organs and tissues (18,119‑122). A previous retrospec‑
tive analysis of 193,113 participants found an elevated risk for 
respiratory impairment and pulmonary function impairment 
after 6 months in these patients (123). The most prevalent mani‑
festation is impaired diffusion capacity for carbon monoxide 
(DLCO) (124). Survivors with a critical illness had a greater 
risk of DLCO impairment, lower residual volume and lower 
total lung capacity (124,125). Notably, the risk of developing 
long COVID appears to differ depending on the various strains. 
Studies have found a lower risk of complications, intensive care 
unit admission, ventilation requirement and mortality rate in 
omicron‑infected individuals compared to those infected with 
other variants (126). Furthermore, as compared to the delta 
variant, the omicron variant has been shown to be associated 
with a lower likelihood of developing long COVID (127).

Mutations in antigenic sites are essential for antibody and 
immunological evasion, and chronic symptoms in patients 
with long COVID‑19 may be partly due to a lessening of 
the antibody response to vaccination or to variant resis‑
tance (17,122,128,129). Of note, >100 persistent symptoms 
were recorded by participants at least 4 weeks after infection, 
according to a scoping analysis that included 50 trials (130). It 
is possible for the majority of ‘long‑haulers’ to have a relapse 
as a result of either physical or mental stress, and cognitive 
impairment or memory issues are common regardless of 
age (18,131). The establishment of a viral reservoir in individ‑
uals with PASC may potentially be a possible explanation for 
the improvement in clinical symptoms that occurred following 
the administration of the SARS‑CoV‑2 immunization (132). 

Figure 1. A summary of the physiological properties of melatonin. Please refer to main text for further details. ROS, reactive oxygen species; IFN, interferon; 
IL, interleukin; JNK, Janus kinase; MCP‑1, monocyte chemoattractant protein‑1; TNF, tumor necrosis factor; GSH, reduced glutathione; SOD2, superoxide 
dismutase 2. Parts of this image were derived from the free medical site http://smart.servier.com/ (accessed on September 15, 2023) by Servier, licensed under 
a Creative Commons Attribution 3.0 Unported Licence.
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Reservoirs of viruses are cells or anatomical locations where 
the virus may persist and accumulate with better kinetic 
stability than the primary pool of viruses that are actively 
reproducing (17,133,134). There is a increasing evidence of 
an association between the presence of viral RNA in prob‑
able SARS‑CoV‑2 reservoirs in extrapulmonary organs and 
tissues, and the continued manifestation of symptoms in 
PASC (17,18,133,134). Patients who have been diagnosed with 
COVID for a long period of time often have reactivated viruses, 
which may cause mitochondrial fragmentation and disrupt 
energy metabolism (18,135‑137). In addition, there is evidence 
of oxidative stress, abnormal amounts of mitochondrial 
proteins and deficits in tetrahydrobiopterin (138,139).

In addition to the dysregulations of inflammatory responses, 
COVID‑19 has been connected to mitochondrial function. 
Mitochondria play a critical role in the control of immune 
responses and cellular metabolism (22,140‑143). The shape 
of the mitochondria is altered by infection, which results in a 
reduction in the number of OXPHOS proteins, a reduction in 
the number of mitochondrial inner membrane protein import 
systems, and an increase in the release of mitochondrial reactive 
oxygen species (144‑146). The SARS‑CoV‑2 virus is capable of 
binding to a variety of host proteins, with mitochondrial proteins 
accounting for up to 16% of the total (22,147‑149). Human 
cells and tissues that have been infected display a decrease in 
the amount of proteins and transcripts of OXPHOS genes, an 
increase in glycolysis, a suppression of OXPHOS, an increase 
in mitochondrial ROS production, inflammation factors, and 
an increase in hypoxia inducible factor‑1α (HIF‑1α) and its 
target genes (22,144,150‑155). A disruption in the process of 
mitochondrial protein synthesis may lead to an imbalance in the 
proportion of mitochondrial proteins that are coded by nuclear 
DNA and mitochondrial DNA, which has the potential to activate 
the integrated stress response and have a number of unfavorable 
repercussions (22). Recently, Guarnieri et al (22) demonstrated 
that once the viral titter peaks, this causes a systemic reaction 
from the host, which includes the regulation of mitochondrial 
gene transcription and glycolysis, ultimately resulting in an anti‑
viral immune defense mechanism. Nevertheless, despite the fact 
that lung clearance and lung mitochondrial function recovery 
were documented, mitochondrial function in the heart, kidney, 
liver and lymph nodes continues to be damaged, which may 
result in severe COVID‑19 pathology (22).

Melatonin, which is well‑known for its antioxidant and 
anti‑inflammatory qualities, has the potential to assist in over‑
coming the cytokine storm that is associated with virus‑related 
infections, such as SARS‑CoV‑2, and may also be able to prevent 
mitochondrial‑related chronic consequences of the disease. The 
anti‑inflammatory and antioxidant properties of melatonin may 
potentially be beneficial for the treatment of possibly chronic 
inflammation in patients with long COVID‑19. These views are 
discussed in the following section. The effects of melatonin on 
the pathophysiological mechanisms of COVID‑19 are summa‑
rized in the schematic diagram in Fig. 2.

4. Mechanisms through which melatonin can alleviate 
COVID‑19

Melatonin supplementation has the potential to target and 
benefit the host by reducing the exaggeration of the innate 

immune system, which is essential for improving tolerance 
against the invasion of pathogens (156). There is a substantial 
association between the immunological response of the host, 
particularly the innate immune network, and the symptoms 
and the results of viral infections with the host (156,157). 
The overwhelming inflammatory response that is triggered 
by the cytokine storm is responsible for the majority of the 
detrimental effects caused by SARS‑CoV‑2 (36,114,156,157). 
Consequently, this excessive production of cytokines is harmful 
to organs and tissues, which ultimately results in oxidative 
damage to several organs (36,114,157,158). A considerable 
improvement in the outcomes of patients with SARS‑CoV‑2 
infection may be achieved by downregulating the innate 
immune response and reducing the inflammatory reaction. 
This provides evidence for the use of this treatment method in 
the treatment of patients with severe COVID‑19 (77,159).

Melatonin is a potent free radical scavenger and antioxi‑
dant that directly detoxifies a wide range of ROS and reactive 
nitrogen species (RNS). These ROS and RNS include hydroxyl 
radicals, peroxynitrite anion, hydrogen peroxide, superoxide 
anion radicals and hypoochlorous acid (25,27,50,93,160). Its 
electron‑donating metabolites outperform traditional antioxi‑
dants, such as vitamins C and E, carotenoids, and NADH in 
reducing other oxidizing compounds (156,161). Additionally, 
melatonin has an advantageous cellular distribution due to its 
solubility in both water and lipids, and it may form hydrogen 
bonds with proteins and DNA to provide protection (60,161). 
Additionally, it upregulates the gene expression levels of 
several antioxidant enzymes, thus indirectly enhancing the 
cellular antioxidant capacity (161,162). By interacting on the 
mitochondrial metabolism, melatonin is also able to inhibit the 
production of ROS and RNS (60,156).

Melatonin is a potent anti‑inflammatory chemical that 
functions by rescuing the peroxynitrite anion, which leads 
to the inhibition of inflammation that is not specific to any 
one substance, such as carrageenan or zymosan (79,163,164). 
Its anti‑inflammatory mechanisms are diverse, including the 
suppression of the activity or downregulation of pro‑inflam‑
matory enzymes, such as cyclooxygenase‑2, inducible nitric 
oxide synthase, eosinophilic peroxidase and matrix metallo‑
proteinase 2 (MMP)2, which are responsible for the generation 
of inflammatory mediators (156,165‑167). Furthermore, mela‑
tonin has the ability to inhibit the advancement of the NLR 
family pyrin domain containing 3 (NLRP3) inflammasome, 
which ultimately results in the activation of caspase‑1 and the 
maturation of IL‑1β and IL‑18. This ultimately leads to pyrop‑
tosis, a damaging consequence of inflammation (168‑170). 
Melatonin is able to effectively prevent the production of 
NLRP3 inflammasomes and reduce inflammation, both of 
which are connected to COVID‑19. This affect is achieved 
by its interaction with signal transduction pathways (167‑169). 
Melatonin has the ability to decrease the phosphorylation 
of IκBα, therefore reducing the translocation of NF‑κB into 
the nucleus. This, in turn, helps to control the cytokine storm 
that occurs following infection with COVID‑19 and may be 
associated with damaging inflammation (171‑174). The down‑
regulation of melatonin also stimulates autophagic capacity, 
which is often accompanied by a reduction in the creation 
of inflammasomes. This may speed up the process of tissue 
healing from inflammation (174,175).
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Melatonin is a hormone that controls the immune 
system, reducing the excessive response of both the innate 
immune system and fostering the development of adaptive 
immunity (156,176). Some examples of pathogen associ‑
ated molecular pattern receptors are Toll‑like receptors 
(TLRs), Nod‑like receptors (NLRs), AIM2‑like receptors, 
GMP‑AMP synthase (cGAS) and AIM2. These receptors 
are responsible for driving the innate immune system, 
which is the initial line of defense against the invasion 
of pathogens (156,177). Innate immune cells are able to 
eliminate infections with the assistance of these receptors, 
which are able to identify RNA, DNA, proteins and lipids 
that are associated with pathogens (156,177). However, their 
excessive responses often result in injury to the tissues. 
Melatonin is able to suppress the activation of TLR4, 
TLR9 and cGAS, which results in a reduction in the innate 
immune response and a reduction in the damage to tissue 
that is caused by infections, ischemia/reperfusion and other 
disturbances (156,178‑180).

Innate immune cells are directly affected by melatonin, 
principally via the negative regulatory functions that it 
has (156,181). It does this by preventing ERK phosphorylation, 
which in turn prevents neutrophil migration and the tissue 
damage that is associated with it (182). The administration 
of melatonin lowers mast cell activation, TNF‑α and IL‑6 

production, and IKK/NF‑κB signal transduction in activated 
mast cells (155,182‑185). Treatment with melatonin reverses 
the transformation from M2 anti‑inflammatory macrophages 
to M1 pro‑inflammatory subtypes, which assists in the 
elimination of SARS‑CoV‑2 and suppresses the dysfunc‑
tional hyper‑inflammatory response that is mediated by M1 
macrophages (156,186). Whens physiological circumstances 
are met, melatonin has the potential to boost innate immunity, 
thus maintaining its protective effects against the invasion of 
pathogens (31,187).

Melatonin may also have an effect on COVID‑19 
infection by preventing the virus from entering cells and 
replicating after first entry (17,25,156). There are three 
enzymes that are responsible for the entry of SARS‑CoV‑2 
into cells: ACE2, transmembrane protease serine 2 and A 
disintegrin and metalloprotease 17 (188‑190). It is possible 
that melatonin can target these molecules in order to delay 
the entry of the coronavirus into the cells (189). The progres‑
sion of COVID‑19 may be controlled by the circadian 
system, while the melatonin circadian rhythm may also 
be responsible for this regulation (155,188‑190). It is also 
possible that melatonin may influence ACE2 activity in an 
indirect manner by binding to calmodulin or MMP9 (191). 
Recent research has indicated that melatonin has the poten‑
tial for use as a therapeutic agent on ACE2. It has been 

Figure 2. Summary of the pathophysiological processes related to acute and long COVID‑19 and sites of potential action of melatonin (symbolized with *µ) 
based on its physiopathological properties. Please refer to relevant parts of the text for further details. ACE2, angiotensin converting enzyme 2; ARDS, acute 
respiratory distress syndrome; MOF, multiorgan failure; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; SIRS, systemic inflammatory 
response syndrome. Parts of this image were derived from the free medical site http://smart.servier.com/ (accessed on September 15, 2023) by Servier, licensed 
under a Creative Commons Attribution 3.0 Unported Licence.
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found that transgenic mice exhibit greater vulnerability to 
SARS‑CoV‑2 infection, as well as delayed clinical signs and 
an enhanced survival (192,193). In addition, melatonin has 
the potential to decrease the activation of CD147 during a 
SARS‑CoV‑2 infection via inhibiting the production of 
HIF‑1Α (194). Research has demonstrated that melatonin 
may reduce the reproduction of some viruses, such as swine 
coronaviruses and Dengue virus, with the effectiveness 
of this effect being dose‑dependent (195,196). Melatonin 
may suppress SARS‑CoV‑2 replication; however, to date, 
no animal research has shown this to be true (197). It is 
possible that melatonin inhibits viral replication by blocking 
growth factor signaling (27,198,199). Due to its uniqueness 
and lack of presence in host cells, the major protease (Mpro) 
of SARS‑CoV‑2 has emerged as a possible target for the 
development of replication inhibitors (156). According to the 
crystal structure of the SARS‑CoV‑2 Mpro and PF‑07321332 
complex, melatonin binds to the catalytic amino acid residues 
of C145 and H41 via pi‑sulfur/conventional hydrogen bonds 
and carbon‑hydrogen bonds. This suggests that melatonin 
works as an effective Mpro inhibitor (156,194,200,201). In 
the following section, the limited evidence of the benefi‑
cial effects of melatonin on patients with COVID‑19 is 
discussed, building on these potential advantages derived 
from previous clinical or preclinical research.

5. Clinical evidence for COVID‑19 and melatonin

Previous research on other viral diseases, together with the 
possible antiviral properties of melatonin, has led to its sugges‑
tion as a possible therapeutic agent for COVID‑19 (17,49,202). 
Melatonin has been tested in clinical studies for the treatment 
of COVID‑19. The results revealed that the drug improved 
sleep quality, reduced the duration of hospitalization and was 
useful as a preventative measure (155,180,202,203). However, 
the studies are restricted owing to inadequate financial assis‑
tance (melatonin is affordable and non‑patentable) (156).

Only a small number of trials have studied the safety 
and effectiveness of melatonin and its therapeutic value 
in COVID‑19, and they were only recently evaluated in 
a meta‑analysis (202). The most notable findings were 
that patients using melatonin had a much higher clinical 
improvement rate than the control groups (202). Melatonin 
administration also resulted in a reduced death rate, reduced 
C‑reactive protein (CRP) concentration, and length of hospital 
stay than the controls (202). The study concluded that mela‑
tonin had significant benefits on patients with COVID‑19 
when administered as adjuvant treatment, boosting clinical 
improvement and shortening recovery time owing to shorter 
hospital stays and mechanical ventilation durations (202). 
Other research included the following observations: The case 

Figure 3. Schematic illustration summarizing the beneficial outcomes of melatonin supplementation from clinical studies in humans. ASC, apoptosis‑asso‑
ciated speck‑like protein containing a caspase recruitment domain; CASP1, caspase‑1; CRP, C‑reactive protein; GATA, GATA binding protein 3; IFN‑γ, 
interferon γ; IL, interleukin; STAT, signal transducer and activator of transcription; T‑bet, T‑box expressed in T‑cell; TNF, tumor necrosis factor. Parts of this 
image were derived from the free medical site http://smart.servier.com/ (accessed on September 15, 2023) by Servier, licensed under a Creative Commons 
Attribution 3.0 Unported Licence.
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group exhibited lower levels of IL‑4 and IFN‑γ in their plasma, 
as well as lower levels of signal transducer and activator of 
transcription (STAT)4, T‑bet, STAT6 and GATA binding 
protein 3 expression in comparison to the control group (203). 
In their study, Alizadeh et al (204) discovered that the case 
group exhibited a reduction in CRP levels both before and 
after the ingestion of melatonin. On the other hand, the control 
group did not exhibit a significant reduction in CRP levels. 
A different case group exhibited an improvement in clinical 
signs and symptoms, such as cough, dyspnea and tiredness, 
while simultaneously exhibiting a decrease in CRP levels in 
comparison to the control group (205). When compared to 
the control group, the low dosage of melatonin resulted in 
a reduction in CRP levels, lung involvement, a shorter time 
to discharge from the hospital, and a shorter period after 
returning to baseline health (206). According to the findings 
of another study that examined the quality of sleep and other 
outcomes of patients with COVID‑19, both oxygen satura‑
tion and sleep quality increased (207). Chavarría et al (208) 
demonstrated that melatonin supplementation in patients with 
moderate symptoms resulted in decreased levels of CRP, 
IL‑6, procalcitonin and lipid peroxidation, and elevated nitrite 
levels. In addition, the levels of numerous pro‑inflammatory 
indicators, such as IL‑1β, TNF‑α, malondialdehyde, nitric 
oxide, superoxide dismutase, ASC and CASP1, were found 
to be lower in persons who were administered melatonin 
in comparison to the group that served as the control (209). 
Finally, patients with COVID‑19 and insomnia who received 
prolonged‑release melatonin exhibited improvements in their 
sleep, a reduction in the number of episodes of delirium, 
a shorter length of hospitalization, a shorter stay in the 
sub‑intensive care unit, and a shorter duration of therapy 
with non‑invasive ventilation (210). The benefits associated 
with the use of melatonin in COVID‑19 clinical studies are 
illustrated in Fig. 3.

6. Conclusions and future perspectives

COVID‑19 remains a critical global health concern. Acute 
COVID pathophysiology linked to the cytokine storm and 
oxidative stress, and long COVID research have yielded 
mitochondrial dysfunction among other mechanisms, all of 
which can be alleviated by providing melatonin (17). The 
treatment options that have been proposed include, in addition 
to enhancing the function of immune cells, the elimination of 
autoantibodies, immunosuppressants and antivirals, as well 
as agents that possess antioxidant properties, mitochondrial 
support and the generation of mitochondrial energy (18,159). 
A number of these could be achieved by including the use 
of melatonin as an adjuvant therapeutic option. However, 
despite promising and with positive outcomes based on 
a small number of clinical trials, its actions need to be 
investigated further, as an ample amount of the therapeutic 
potential of melatonin remains underexplored, also due 
to funding limitations (27,202). On the other hand, further 
clinical studies that are well‑designed are warranted in order 
to validate these findings (202). Of utmost interest would be 
the design of trials with various time points primarily exam‑
ining the acute phase anti‑inflammatory properties and on a 
longer term, the preventive potential against mitochondrial 

damage and long COVID pathology (17). Finally, the factors 
influencing the effects of melatonin, including dosage also 
need to be thoroughly explored.
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