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Abstract. Cancer stem cells (CSCs), which have the poten-
tial for self-renewal, differentiation and de-differentiation, 
undergo epigenetic, epithelial-mesenchymal, immunological 
and metabolic reprogramming to adapt to the tumor micro-
environment and survive host defense or therapeutic insults. 
Intra-tumor heterogeneity and cancer-cell plasticity give 
rise to therapeutic resistance and recurrence through clonal 
replacement and reactivation of dormant CSCs, respectively. 
WNT signaling cascades cross-talk with the FGF, Notch, 
Hedgehog and TGFβ/BMP signaling cascades and regulate 
expression of functional CSC markers, such as CD44, CD133 
(PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical 
and non-canonical WNT signaling in human malignancies, 
including breast, colorectal, gastric, lung, ovary, pancreatic, 
prostate and uterine cancers, leukemia and melanoma, are 
involved in CSC survival, bulk-tumor expansion and invasion/
metastasis. WNT signaling-targeted therapeutics, such as 
anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), 
anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-
PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 
mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), 
small-molecule porcupine inhibitors (ETC-159, WNT-C59 
and WNT974), tankyrase inhibitors (AZ1366, G007-LK, 
NVP-TNKS656 and XAV939) and β-catenin inhibitors 
(BC2059, CWP232228, ICG-001 and PRI-724), are in clinical 
trials or preclinical studies for the treatment of patients with 
WNT-driven cancers. WNT signaling-targeted therapeutics 
are applicable for combination therapy with BCR-ABL, 
EGFR, FLT3, KIT or RET inhibitors to treat a subset of 
tyrosine kinase-driven cancers because WNT and tyrosine 
kinase signaling cascades converge to β-catenin for the main-
tenance and expansion of CSCs. WNT signaling-targeted 

therapeutics might also be applicable for combination therapy 
with immune checkpoint blockers, such as atezolizumab, 
avelumab, durvalumab, ipilimumab, nivolumab and pembro-
lizumab, to treat cancers with immune evasion, although the 
context-dependent effects of WNT signaling on immunity 
should be carefully assessed. Omics monitoring, such as 
genome sequencing and transcriptome tests, immunohisto-
chemical analyses on PD-L1 (CD274), PD-1 (PDCD1), ROR1 
and nuclear β-catenin and organoid-based drug screening, 
is necessary to determine the appropriate WNT signaling-
targeted therapeutics for cancer patients.
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1. Introduction

Cancer stem cells (CSCs), which show the potential for self-
renewal and differentiation, have been identified in a variety 
of human cancers based on their tumor initiating potential 
in vivo (1-3). Clonal expansion of a minor CSC population with 
a drug-resistant mutation causes early recurrence, whereas 
reactivation of dormant CSCs into cycling CSCs owing to 
tumor plasticity leads to late relapse (4-6). CSCs or bulk tumor 
cells undergo epigenetic reprogramming (7), epithelial-mesen-
chymal reprogramming [epithelial-to-mesenchymal transition 
(EMT) and mesenchymal-to-epithelial transition (MET)] (8,9), 
immunological reprogramming (immuno-editing) (10,11) and 
metabolic reprogramming (12) to adapt to the tumor micro-
environment, which is collectively defined here as ‘omics 
reprogrammming’ (Fig. 1). Since cycling CSCs that depend on 
aerobic glycolysis converge into quiescent mesenchymal CSCs 
through omics reprogramming to survive therapeutic insult for 
later recurrence, CSC targeting is necessary to avoid relapse 
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after cancer therapy and improve the cost-effectiveness ratio 
of cancer precision medicine.

CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49) are 
representative cell-surface markers of CSCs (2,13-16). LGR5, 
encoding an R-spondin (RSPO) receptor, is a target gene of 
the canonical WNT/β-catenin signaling cascade in quiescent 
as well as cycling stem cells, whereas CD44 and CD133 are 
further upregulated by WNT and RSPO signals in LGR5+ 
cycling stem/progenitor cells (17-19). EPCAM can potentiate 
the canonical WNT/β-catenin signaling cascade through 
intra-membrane proteolysis and subsequent nuclear trans-
location of its intracellular C-terminal domain (20). WNT 
signaling cascades cross-talk with the FGF, Notch, Hedgehog 
and TGFβ/BMP signaling cascades to constitute the stem cell 
signaling network, which regulates expression of functional 
CSC markers (21-24).

The WNT family proteins transduce signals through the 
Frizzled (FZD) and LRP5/6 receptors to the WNT/β-catenin 
and WNT/STOP (stabilization of proteins) signaling cascades 
(also known as the canonical WNT signaling cascades) and 
through the FZD and/or ROR1/ROR2/RYK receptors to the 
WNT/PCP (planar cell polarity), WNT/RTK (receptor tyro-
sine kinase) and WNT/Ca2+ signaling cascades (also known 
as the non-canonical WNT signaling cascades) (21,25-29). 
The canonical WNT/β-catenin signaling cascade is involved 
in self-renewal of stem cells and proliferation or differentia-
tion of progenitor cells (30-33), whereas non-canonical WNT 
signaling cascades are involved in maintenance of stem cells, 
directional cell movement or inhibition of the canonical WNT 
signaling cascade (34-37). Both canonical and non-canonical 
WNT signaling cascades play key roles in the development 
and evolution of CSCs.

By contrast, tumors consist of heterogeneous popula-
tions of cancer cells and non-cancerous stromal/immune 
cells  (38,39). Intra-tumor heterogeneity of cancer cells is 
caused by the evolution of CSCs based on epigenetic and 
genetic alterations (40-42), as well as the differentiation of 
CSCs into bulk tumor cells (1-3), niche-like cancer supporting 
cells (43), endothelial-like cancer cells (44) and fibroblast-like 
cancer cells (45). On the other hand, intra-tumor heteroge-
neity of non-cancerous stromal/immune cells is orchestrated 
by and reciprocally orchestrates CSCs and their descen-
dants (39,45‑47). Interaction and co-evolution of CSCs and 
niche cells are driving forces of cancer progression. Herein, 
canonical and non-canonical WNT signaling in CSCs will 
be described, with a focus on the heterogeneity of cancer 
and stromal/immune cells in the tumor microenvironment; 
then, anti-CSC mono- and combination therapies using 
WNT signaling-targeted therapeutics will be reviewed with 
emphases on omics reprogramming and tumor plasticity.

2. Canonical WNT signaling in CSCs and their niches

Canonical WNT signaling through the FZD-LRP5/6 receptor 
complex leads to de-repression of β-catenin as well as STOP-
target proteins, such as ATOH1, CCND1 (Cyclin D1), FOXM1, 
MYC (c-MYC), NRF2 (NFE2L2), PLK1, SMAD1/3/4, SNAI1 
(Snail) and YAP/TAZ, from proteasomal degradation induced 
by GSK-3β-dependent phosphorylation and subsequent 
ubiquitylation (27-29,48) (Fig. 2). β-catenin stabilization and 

subsequent nuclear translocation leads to transcriptional acti-
vation of β-catenin-TCF/LEF target genes, such as ATOH1, 
CCND1, CD44, FGF20, JAG1, LGR5, MYC and SNAI1, 
although transcriptional outputs of the WNT/β-catenin 
signaling cascade are determined in a cellular context-
dependent manner (e.g., epigenetic status of target genes and 
activities of other transcriptional regulators). ATOH1, CCND1, 
MYC and SNAI1 are upregulated transcriptionally and post-
translationally by the β-catenin and STOP signaling cascades, 
respectively. Canonical WNT signals control cell fate and 
function through transcriptional and post-translational regula-
tion of the omics network.

Canonical WNT signaling in CSCs is activated by 
WNT2B, WNT3 and other canonical WNT ligands derived 
from cancerous supporting cells or non-cancerous stromal 
cells (49-52), as well as genetic alterations in the canonical 
WNT/β-catenin signaling components, such as EIF3E-RSPO2 
fusions, PTPRK-RSPO3 fusions, gain-of-function muta-
tions in the CTNNB1 (β-catenin) gene and loss-of-function 
mutations in the APC, AXIN1, AXIN2, RNF43 and ZNRF3 
genes (29,53‑55). Canonical WNT signals increase the LGR5 
receptor level on CSCs for the maintenance of the canonical 
WNT responsive state but also upregulate AXIN2, DKK1, 
NOTUM, RNF43 and ZNRF3 for negative feedback regula-
tion (18-21,29). Loss-of-function mutations in the APC, AXIN2, 
RNF43 and ZNRF3 genes release CSCs from the constraints 
of the negative feedback regulation.

Canonical WNT signals can directly promote CSC prolif-
eration through upregulation of CCND1, FOXM1, MYC and 
YAP/TAZ as described above. By contrast, canonical WNT 
signaling in CSCs induces expression and secretion of growth 
factors, such as FGFs, KIT ligand (KITLG or SCF) and VEGF 
(VEGFA), to fine-tune the tumor microenvironment (18,21,29). 
For example, MET (HGF receptor) is upregulated in human 
basal-like breast cancers with TP53 mutations as well as 
mouse basal-like breast tumors with compound gain-of-
function Ctnnb1 mutation and homozygous Tp53 deletion (56), 
and combined activation of the canonical WNT/β-catenin and 
HGF/MET signaling cascades induces SHH upregulation in 
mouse mammary CSCs and subsequent activation of cancer-
associate fibroblasts for the synergistic proliferation of CSCs 
and cancer-associate fibroblasts (57).

Together, these findings indicate that canonical WNT 
signaling is involved in the maintenance and expansion of 
CSCs through direct effects on CSCs themselves and indirect 
effects via CSC-stromal/immune interactions.

3. Non-canonical WNT signaling in CSCs and their niches

Non-canonical WNT signaling through FZD receptors and/
or ROR1/ROR2/RYK co-receptors activates the PCP, RTK or 
Ca2+ signaling cascades (Fig. 2).

Non-canonical WNT/PCP signaling through FZD receptors 
and Dishevelled (DVL) adaptor proteins regulates the coordi-
nated cellular orientation within an epithelial plane, collective 
cell movements during gastrulation and neurulation stages of 
embryogenesis and directional cell movement during inva-
sion and metastasis of cancer cells (58-62). WNT/PCP signals 
are converted to actin cytoskeletal dynamics via the small 
G-proteins RAC and RHO (Fig. 2), and then, RAC and RHO 
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activate JNK-dependent transcription and YAP/TAZ-dependent 
transcription, respectively (63-66). WNT/PCP signaling regu-
lates actin cytoskeletal dynamics, directional cell movement 
and JNK- or YAP/TAZ-dependent transcription.

Non-canonical WNT signaling through RTKs, such as 
ROR1, ROR2 and RYK, activates the PI3K-AKT signaling 
cascade (29,67-69). ROR1 and ROR2, with the extracellular 

WNT-binding FZD-like domain, are homologous to MUSK, 
NTRK1, NTRK2, NTRK3, DDR1 and DDR2 in their 
cytoplasmic tyrosine kinase domain, whereas RYK with an 
extracellular WNT-binding WIF domain is homologous to 
AXL, EGFR, ERBB2, ERBB3, ERBB4, MET, MERTK, 
MST1R and TYRO3 in its cytoplasmic tyrosine kinase 
domain (39,70-73). ROR1 and ROR2 are atypical RTKs that 

Figure 1. Therapeutic resistance owing to evolution and plasticity of cancer stem cells (CSCs). CSCs with self-renewal, differentiation and de-differentiation 
potentials undergo omics reprogramming, such as epigenetic reprogramming, immuno-editing (immunological reprogramming), two-way shifts between 
epithelial and mesenchymal states (epithelial-mesenchymal reprogramming) and two-way shifts between aerobic glycolysis and oxidative phosphorylation 
in the tricarboxylic acid cycle (metabolic reprogramming). Genetic or epigenetic evolution of CSCs gives rise to a repertoire of drug-resistant CSCs, which 
cause early recurrence through clonal expansion of drug-resistant CSCs replacing drug-sensitive bulk tumors. By contrast, the plasticity of CSCs with omics 
reprogramming potential gives rise to dormant CSCs to survive host defense or therapeutic insult, which cause late relapse through reactivation of dormant 
CSCs into cycling CSCs. CSC-targeted therapeutics are necessary to avoid drug resistance or recurrence after anticancer therapy. MDSC, myeloid-derived 
suppressor cell; NK, natural killer cell; Treg, regulatory T cell.
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are defective in intrinsic tyrosine kinase activity for auto-
phosphorylation; however, ROR1 and ROR2 can be tyrosine 
phosphorylated by other tyrosine kinases, such as EGFR, 
ERBB3, MET and SRC, to activate the PI3K-AKT and YAP 
signaling cascades (29,74-78) (Fig. 2). WNT/RTK signaling is 
involved in therapeutic resistance and recurrence of human 
cancers in part through PI3K-AKT signaling activation.

Non-canonical WNT signals induce cytosolic Ca2+ eleva-
tion through Ca2+ release from the endoplasmic reticulum 
or Ca2+ influx from the extracellular space. WNT signaling 
through Frizzled receptors are involved in Ca2+ release from 

the endoplasmic reticulum via small G-protein- or SEC14L2-
mediated activation of phospholipase C (PLC) and subsequent 
generation of inositol-1,4,5-triphosphate (IP3)  (21,79-81). 
WNT signaling through Polycystin 1 (PKD1) is proposed 
to induce Ca2+ influx through a TRPP2 Ca2+ channel (82). 
Ca2+/Calmodulin-dependent protein kinase II (CAMK2) and 
Calcineurin are representative downstream effectors of the 
WNT/Ca2+ signaling cascade (Fig. 2). For example, WNT/Ca2+ 
signaling-dependent CAMK2 activation leads to phosphoryla-
tion and activation of Nemo-like kinase (NLK), which can 
inhibit canonical WNT/β-catenin signaling in some cells (83). 

Figure 2. Overview of WNT signaling cascades and WNT signaling-targeted therapeutics. WNT signals are transduced by multiple downstream signaling 
cascades in a cell context-dependent manner. Canonical WNT signaling through Frizzled (FZD) and LRP5/6 receptors is transduced by the WNT/β-catenin 
and WNT/STOP (stabilization of proteins) signaling cascades, whereas non-canonical WNT signaling through FZD and/or ROR1/ROR2/RYK receptors is 
transduced by the WNT/PCP (planar cell polarity), WNT/RTK (receptor tyrosine kinase) and WNT/Ca2+ signaling cascades. Antibody-based drugs, such as 
anti-LGR5 antibody-drug conjugate (ADC), anti-RSPO3 monoclonal antibody (mAb), anti-ROR1 mAb and anti-PTK7 ADC, ROR1 chimeric antigen receptor-
modified T (CAR-T) cells, porcupine (PORCN) inhibitors and β-catenin inhibitors are representative WNT signaling-targeted therapeutics in clinical trials or 
preclinical studies for the treatment of cancer patients.
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WNT-dependent CamK2 activation in cardiomyocytes gives 
rise to cardiac hypertrophy through phosphorylation and 
cytoplasmic tethering of Hdac4 and subsequent de-repression 
of Mef2 target genes (84). WNT/Ca2+ signaling-dependent 
Calcineurin activation leads to dephosphorylation and subse-
quent nuclear translocation of NFAT for the transcriptional 
activation of NFAT-target genes (85). By contrast, KRAS-
dependent FZD8 repression in pancreatic cancer cells leads 
to potentiation of tumorigenesis through WNT/Ca2+ signaling 
inhibition (37). WNT/Ca2+ signaling to downstream effectors, 
such as CAMK2 and Calcineurin, is involved in a variety 
of cellular processes through transcriptional activation of 
NFAT-target genes, de-repression of MEF2-target genes and 
repression WNT/β-catenin-target genes in a cellular context-
dependent manner.

Non-canonical WNT signaling in CSCs is activated by 
WNT5A, WNT11 and other non-canonical WNT ligands (58) 
that are secreted from cancer cells (86,87) or stromal/immune 
cells (88,89), as well as genetic alterations that trans-activate 
non-canonical WNT signaling cascades, such as E2A-PBX1 
fusion and MET amplification (74-76). Non-canonical WNT 
signaling through FZD7 activates the PI3K-AKT signaling 
cascade as a result of Daple (CCDC88C)-mediated dissociation 
of Gβγ from Gαi (90), whereas non-canonical WNT signaling 
through ROR1 activates PI3K-AKT signaling cascade owing 
to ROR1 trans-phosphorylation by other tyrosine kinases, such 
as MET and SRC (67,75). ROR1 is involved in HER3-Y1307 
trans-phosphorylation and subsequent NSUN6-dependent 
MST1-K59 methylation, which induces YAP/TAZ-dependent 
transcriptional activation through LATS1/LATS2 inhibi-
tion (78). WNT/PCP signaling can also induce Rho-mediated 
LATS1/LATS2 inhibition for transcriptional activation of 
YAP/TAZ-target genes  (91,92), whereas non-canonical 
WNT signaling through FZD10 induces YAP/TAZ activa-
tion through Gα13  (93). Non-canonical WNT signaling 
promotes survival and therapeutic resistance of CSCs through 
PI3K-AKT signaling activation and YAP/TAZ-mediated tran-
scriptional activation.

By contrast, invasion and metastasis are driven by canonical 
WNT signaling cascades and non-canonical WNT signaling 
cascades. For example, canonical WNT/β-catenin and WNT/
STOP signaling cascades synergistically upregulate SNAI1 to 
repress epithelial genes, such as CDH1 (E-cadherin), for the 
initiation of EMT of CSCs, and non-canonical WNT signals 
promote invasion, survival and metastasis of CSCs or circu-
lating tumor cells (28,29,35,62,87). Together, these findings 
clearly indicate that canonical WNT/β-catenin signaling as 
well as other WNT signaling cascades are critically involved 
in the malignant features of CSCs.

4. Anti-CSC mono-therapy targeting WNT signaling 
cascades

WNT signaling cascades are hot and cutting-edge topics 
in the field of translational oncology and medicinal chem-
istry (29,94‑96). Therapeutics directly targeting WNT signaling 
cascades are classified into i) ligand/receptor-targeted drugs 
binding to ligands or transmembrane proteins involved in WNT 
signaling, ii) porcupine (PORCN) inhibitors abrogating WNT 
secretion and FZD-dependent signaling, iii) tankyrase (TNKS) 

inhibitors repressing WNT/β-catenin and WNT-independent 
signaling cascades and iv) β-catenin inhibitors blocking 
TCF/LEF-dependent transcription (Table I).

Human/humanized monoclonal antibody  (mAb) drugs, 
such as anti-FZD1/2/5/7/8 mAb (vantictumab/OMP-18R5) (97), 
anti-FZD5 mAb (IgG-2919) (52), anti-FZD10 antibody-drug 
conjugate (ADC) (OTSA101-DTPA-90Y)  (98), anti-LGR5 
ADC (mAb-mc-vc-PAB-MMAE)  (99), anti-PTK7 ADC 
(PF-06647020)  (100), anti-ROR1 mAb (cirmtuzumab/
UC-961)  (101) and anti-RSPO3 mAb (rosmantuzumab/
OMP-131R10) (102) have been developed as large-molecule 
cancer therapeutics. ROR1 CAR-T cells (103) and WNT-trapping 
FZD8-Fc chimeric protein (ipafricept/OMP-54F28)  (104) 
are also classified as WNT ligand/receptor-targeted drugs. 
Among this class of therapeutics, cirmtuzumab, ipafricept, 
PF-06647020, rosmantuzumab and vantictumab, which 
showed anti-CSC effects in preclinical model experiments, are 
in clinical trials to treat cancer patients (Table I).

PORCN inhibitors restrain PORCN-dependent palmi-
toleoylation of WNT family ligands in the endoplasmic 
reticulum, which obstructs WNT signaling through blockade 
of WNT secretion as well as palmitoleoylated WNT-mediated 
oligomerization of FZD receptors (105-108). ETC-159 (109), 
IWP-2 (110), WNT-C59 (111) and WNT974 (LGK974) (112) 
are small-molecule PORCN inhibitors. A preclinical study of 
IWP-2 on organoids derived from colorectal cancer patients 
revealed that PORNC inhibitors are applicable for the treatment 
of cancers with RNF43 mutations but not APC mutations (52). 
By contrast, preclinical studies of WNT974 indicated that 
PORNC inhibitors repress the survival and tumor initiating 
potential of CSCs  (43,112). ETC-159 and WNT974 are in 
clinical trials for the treatment of cancer patients (Table I).

TNKS inhibitors repress TNKS-dependent poly-ADP-
ribosylation and subsequent degradation of negative regulators 
of oncogenic signaling cascades, such as AXIN family proteins, 
AMOT family proteins, PTEN and TERF1 (TRF1), which 
results in inhibition of WNT/β-catenin signaling, repression of 
YAP-dependent transcription, suppression of PI3K signaling 
and telomere shortening, respectively (113-116). AZ1366 (117), 
G007-LK  (118), JW55  (119), NVP-TNKS656  (120) and 
XAV939 (121) are representative TNKS inhibitors that abro-
gate WNT/β-catenin signaling and tumorigenesis in preclinical 
mouse model experiments. TNKS inhibitors show synergistic 
antitumor effects with other therapeutics, such as an AKT 
inhibitor (API2), EGFR inhibitors (gefitinib and erlotinib), 
a MEK inhibitor (AZD6244), a PI3K inhibitor (BKM120) 
and irinotecan (117,118,120,122-124). TNKS inhibitors are 
promising candidates for CSC-targeted therapeutics; however, 
because of diverse on-target effects, TNKS inhibitors stalled 
in their preclinical stage.

β-catenin inhibitors block TCF/LEF-dependent transcrip-
tion through inhibition of protein-protein interactions (PPI) 
between β-catenin and other transcriptional regulators (29,125), 
promotion of β-catenin degradation  (126) or inhibition of 
β-catenin kinases, such as TNIK (127-129). BC2059 (130), 
CGP049090 (131), CWP232228 (132), ICG-001 (133), LF3 (134), 
PKF115-584 (135), PRI-724 (136) and SAH-BCL9 (137) are 
small-molecule β-catenin PPI inhibitors. MSAB is a small-
molecule compound that binds to β-catenin and promotes 
proteasomal degradation of β-catenin (126). KY-05009 (128), 
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Table I. WNT signaling inhibitors and anti-CSC effects.

		  Preclinical 		  Drug development	 Details of clinical trials
Category	 Drug	 Anti-CSC TX	 (Refs.)	 stage	 for cancer patients

Ligand/	 Anti-FZD1/2/ 5/7/8 mAb 	 Breast CSC	 (97)	 P1 (NCT01345201)	 Solid tumors, Mono
receptor-	 (Vantictumab, OMP-18R5)	 Panc CSC		  P1 (NCT01957007)	 Solid tumors. Combo
targeted 				    P1 (NCT01973309)	 Breast, Combo
drug				    P1 (NCT02005315)	 Panc, Combo
	 Anti-FZD5 mAb		  (52)	 Preclinical
	 (IgG-2919)
	 Anti-FZD10 ADC		  (98)	 Terminated in P1	 Too slow accrual
	 (OTSA101-DTPA-90Y)
	 Anti-LGR5 ADC		  (99)	 Preclinical
	 (mAb-mc-vc-PAB-MMAE)
	 Anti-PTK7 ADC	 Breast CSC	 (100)	 P1 (NCT02222922)	 Solid tumors, Mono
	 (PF-06647020)	 Lung CSC
		  Ovary CSC
	 Anti-ROR1 mAb	 Ovary CSC	 (101)	 P1 (NCT02222688)	 CLL, Mono
	 (Cirmtuzumab, UC-961)			   P1 (NCT02776917)	 Breast, Combo
				    P1/2 (NCT03088878)	 CLL/MCL/SLL, Combo
	 Anti-RSPO3 mAb	 Colorectal	 (102)	 P1 (NCT02482441)	 Solid tumors, Combo
	 (Rosmantuzumab, 	 CSC
	 OMP-131R10)
	 ROR1 CAR-T cells		  (103)	 Preclinical
	 WNT-trapping FZD8-Fc	 Panc CSC	 (104)	 P1 (NCT01608867)	 Solid tumors, Mono
	 (Ipafricept, OMP-54F28)			   P1 (NCT02050178)	 Panc. Combo
				    P1 (NCT02069145)	 Liver, Combo
				    P1 (NCT02092363)	 Ovary, Combo
PORCN	 ETC-159		  (109)	 P1 (NCT02521844)	 Solid tumors, Mono
inhibitor	 IWP-2		  (110)	 Preclinical
	 WNT-C59 		  (111)	 Preclinical
	 WNT974 (LGK974) 	 CML CSC	 (112)	 P1 (NCT01351103)	 Solid tumors, Mono
		  Lung CSC	 (43)	 P1/2 (NCT02278133)	 mCRC, Combo
TNKS	 AZ1366		  (117)	 Preclinical
inhibitor	 G007-LK		  (118)	 Preclinical
	 JW55		  (119)	 Preclinical
	 NVP-TNKS656		  (120)	 Preclinical
	 XAV939		  (121)	 Preclinical
β-catenin	 BC2059	 AML CSC	 (130)	 Preclinical
inhibitor	 CGP049090		  (131)	 Preclinical
	 CWP232228	 Liver CSC	 (132)	 Preclinical
	 ICG-001	 Ovary CSC	 (133)	 Preclinical
	 KY-05009		  (128)	 Preclinical
	 LF3		  (134)	 Preclinical
	 Mebendazole		  (129)	 P1 (NCT01729260)	 Glioma, Mono
				    P1 (NCT02644291)	 Glioma, Mono
				    P1/2 (NCT01837862) 	 Glioma, Combo
	 MSAB		  (126)	 Preclinical
	 PF-794		  (138)	 Peclinical
	 PKF115-584		  (135)	 Preclinical
	 PRI-724 		  (136)	 P1 (NCT01764477)	 Panc, Combo
				    P1/2 (NCT01606579)	 AML/CML, Combo
	 SAH-BCL9		  (137)	 Preclinical

PORCN, porcupine; TNKS, tankyrase; PPI, protein-protein interaction; mAb, monoclonal antibody; bsAb, bispecific antibody; ADC, antibody-
drug conjugate; P1, phase I; P2, phase II; AML, acute myeloid leukemia; Breast, breast cancer; CLL, chronic lymphocytic leukemia; CML, 
chronic myeloid leukemia; Liver, hepatocellular carcinoma; MCL, mantle cell lymphoma; mCRC, metastatic colorectal cancer; NPC, nasopha-
ryngealcarcinoma; NSCLC, non-small cell lung cancer; Ovary, ovarian cancer; Panc, pancreatic cancer; SLL, small lymphocytic lymphoma; 
Mono, mono-therapy; Combo, combination therapy.
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mebendazole (129) and PF-794 (138) are TNIK inhibitors that 
repress phosphorylation of TNIK substrates, such as TCF4, 
FMNL2, PRICKLE1, SMAD1 and SMAD2, which leads to 
inhibition of β-catenin-TCF/LEF-dependent transcription and 
a variety of cellular processes. Among the β-catenin inhibitors 
mentioned above, BC2059, CWP232228 and ICG-001 repress 
the expansion of CSCs. The β-catenin inhibitors PRI-724 and 
mebendazole are in phase I/II clinical trials for cancer patients 
(Table I), whereas other β-catenin inhibitors are still in the 
preclinical stage of drug development. β-catenin inhibitors are 
challenging therapeutics for cancer patients.

WNT signaling cascades are the major driver of various 
types of human cancers (29), but the development of many 
WNT signaling-targeted therapeutics is stuck in the preclinical 
stage or phase I/II stages of clinical trials (Table I) because of 
the complexity of WNT signaling cascades and genetic altera-
tions in non-enzymatic signaling components. MAb-based 
drugs and PORCN inhibitors with the potential to target CSCs 
as well as bulk cancer cells are promising therapeutics for the 
patients with WNT signaling-driven cancers.

5. Anti-CSC combination therapy using WNT signaling-
targeted drugs

Tyrosine kinase inhibitors are rational anticancer therapeutics 
because tyrosine kinases with intrinsic enzyme activities are 
aberrantly activated in cancer cells owing to genetic altera-
tions. Tyrosine kinase inhibitors have contributed to the 
improved prognosis of cancer patients and are essential for 
genome-based precision medicine; however, unavoidable drug 
resistance or recurrence is a serious issue for cancer patients 
and health care systems (4).

Activated tyrosine kinases, such as BCR-ABL fusion 
kinase, EGFR-T790M mutant, FLT3 internal tandem 
duplication (FLT3-ITD) mutant, KIT-D814V mutant 
and RET, promote β-catenin phosphorylation at Y654 to 
release E-cadherin-bound β-catenin from the adherens 
junction for its stabilization and subsequent nuclear translo-
cation (139‑143). By contrast, canonical WNT signals inhibit 
β-catenin phosphorylation at S33, S37, T41 and S45 to release 
β-catenin from proteasomal degradation for its stabilization 
and nuclear translocation  (21,25,26,29). Since canonical 
WNT signals and oncogenic tyrosine kinases converge to 
β-catenin stabilization for the maintenance and expansion 
of CSCs, canonical WNT signaling inhibitors can block 
CSC evasion of tyrosine kinase inhibitors. For example, the 
porcupine inhibitor WNT974 significantly reduced residual 
stem/progenitor cells of chronic myeloid leukemia (CML) 
after treatment with the BCR-ABL inhibitor nilotinib via 
blockade of WNT ligand secretion into the bone marrow 
microenvironment (112); the β-catenin inhibitors ICG-001 
and PRI-724 induced synergistic effects with the BCR-ABL 
inhibitors imatinib and nilotinib, respectively, on CML stem/
progenitor cells (136,144); and the TNKS inhibitor AZ1366 
and EGFR inhibitor gefitinib showed synergistic effects on 
lung cancer cells in vivo  (124). These preclinical studies 
indicate that combination therapies using WNT signaling-
targeted therapeutics and tyrosine kinase inhibitors might be 
applicable for treatment of a subset of patients with tyrosine 
kinase-driven cancers (Fig. 3).

Immune checkpoint blockers that abrogate interactions of 
ligands and inhibitory receptors on CD8+ T cells are promising 
antitumor drugs in the clinic or clinical trials (145-151). PD-L1 
(CD274) is a representative ligand for inhibitory immune 
signaling, whereas PD-1 (PDCD1) and CTLA4 are representa-
tive receptors for inhibitory immune signaling. Anti-PD-L1 
mAbs (atezolizumab, avelumab and durvalumab), anti-PD-1 
mAbs (nivolumab and pembrolizumab) and an anti-CTLA4 
mAb (ipilimumab) are approved for the treatment of patients 
with melanoma or other types of solid tumors. Immune 
checkpoint blockers result in significant therapeutic effects in a 
subset of patients; however, the lack of benefits in other patients 
owing to primary or acquired resistance to immune checkpoint 
blockers has resulted in a cost-effectiveness issue (152-156).

Canonical WNT signaling activation in melanoma 
induces immune evasion through CCL4 repression and 
immunological reprogramming into non-T cell-infiltrated 
melanoma (11). Since melanoma-derived WNT5A promotes 
β-catenin signaling activation and subsequent IDO upregula-
tion in dendritic cells to induce immune evasion through 
accumulation of regulatory T (Treg) cells, combination 
immunotherapy using the porcupine inhibitor WNT-C59 and 
anti-CTLA4 mAb showed synergistic anti-melanoma effects 
in vivo (157). By contrast, WNT5A and ROR2 are relatively 
frequently upregulated in pretreatment tumors of melanoma 
patients that do not respond to PD-1 immune checkpoint 
blockade (158), which suggests involvement of non-canonical 
WNT signaling in resistance to immune checkpoint blockers. 
Since DKK1-dependent canonical WNT signaling inhibition 
or putative reciprocal non-canonical WNT signaling activa-
tion in tumor microenvironment induces immune evasion 
through accumulation of myeloid-derived suppressor cells 
(MDSCs) and depletion of T cells (159), combination therapy 
using anti-DKK1 mAb (BHQ880 or DKN-01) (160,161) and 
immune checkpoint blockers might show synergistic antitumor 
effects in vivo. WNT signaling-targeted therapeutics might be 
applicable for combination immunotherapy for cancer patients 
(Fig. 3); however, context-dependent effects of WNT signaling 
on immunity (4) should be kept in mind.

6. Omics monitoring for WNT signaling-targeted therapy

WNT-related human cancers are classified into three major 
subtypes based on signaling aberrations associated with ther-
apeutic choices (Fig. 3): APC/CTNNB1-altered cancers with 
WNT/β-catenin signaling activation that can be treated with 
β-catenin inhibitors; RNF43/ZNRF3/RSPO2/RSPO3-altered 
cancers with WNT/β-catenin and other WNT signaling acti-
vation that can be treated with PORCN inhibitors, anti-FZD 
mAb or anti-RSPO3 mAb; and ROR1-upregulated cancers 
with WNT/PCP and WNT/RTK signaling activation that can 
be treated with anti-ROR1 mAb, anti-ROR1 x CD3 bispecific 
antibody and ROR1 chimeric antigen receptor-modified T 
(CAR-T) cells  (29). Genome sequencing, transcriptomic 
and/or immunohistochemical tests are necessary for the 
detection and subtyping of WNT signaling-driven cancers 
and subsequent determination of appropriate WNT signaling-
targeted therapeutics (Fig. 3).

WNT signaling-targeted therapeutics are also applicable 
for combination therapies with tyrosine kinase inhibitors or 
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immune checkpoint blockers as mentioned above (Fig.  3). 
Since resistance to tyrosine kinase inhibitors occur owing to 
multiple mechanisms, such as acquired drug-resistant muta-
tions in targeted tyrosine kinases, EMT, activation of other 
tyrosine kinase signaling cascades to bypass targeted tyrosine 
kinases  (4,162) and activation of WNT/β-catenin signaling 

cascade (Fig. 3), genomic, transcriptomic and/or immunohisto-
chemical monitoring during tyrosine kinase inhibitor treatment 
is also necessary to identify a subset of patients for combination 
therapy with tyrosine kinase inhibitor and WNT signaling-
targeted therapeutics. By contrast, because WNT signaling in 
the tumor microenvironment orchestrates antitumor immunity 

Figure 3. Investigational WNT signaling-targeted therapeutics for genome-based precision medicine. WNT signaling-targeted therapeutics are applicable for 
mono-therapy of WNT-related human cancers: β-catenin inhibitors for WNT-driven cancers with APC or CTNNB1 alterations; porcupine (PORCN) inhibitors, 
anti-FZD or anti-RSPO3 monoclonal antibody (mAb) for WNT-driven cancers with RNF43, RSPO2, RSPO3 or ZNRF3 alterations; and anti-ROR1 mAb for 
WNT-driven cancers with ROR1 upregulation. By contrast, WNT signaling-targeted therapeutics are applicable for combination therapies with tyrosine kinase 
inhibitors (TKI) to treat a subset of tyrosine kinase (TK)-driven cancers. WNT signaling-targeted therapeutics are also applicable for combination therapies 
with immune checkpoint blockers (ICB) to treat cancers with immune evasion; however, because WNT signals regulate immune evasion and antitumor 
immunity in a context-dependent manner, monitoring of WNT signaling and immunity is mandatory to select an appropriate class of WNT signaling-
targeted therapeutics for combination immunotherapy. Therefore, omics monitoring, including genome sequencing, transcriptomic, immunohistochemical 
and organoid-based tests, is necessary before and during selection of WNT signaling-targeted therapeutics for cancer patients. Mut, mutation; Fus, fusion.
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and immune tolerance in a context-dependent manner, immune 
monitoring is necessary to choose the appropriate WNT 
signaling-targeted therapeutics for cancer patients with immune 
evasion (Fig. 3).

Investigational genome medicine platforms based on 
nucleotide sequencing of transcribed regions are applicable 
for determination of targeted therapeutics only in 10-24% of 
cancer patients (163,164). Since alterations in non-transcribed 
regulatory regions also drive human carcinogenesis, whole-
genome sequencing rather than whole- or partial-exome 
sequencing is preferable to improve the precision of genome-
based medicine  (4,165). In addition, organoid culture is a 
cutting-edge technology in the fields of oncology and stem cell 
biology (166-168), and organoid-based tests are also used for 
selecting targeted therapeutics (163,166). However, because 
tumor-stromal/immune interactions are not recapitulated in 
patient-derived organoid models, immunological monitoring 
in the tumor microenvironment is also necessary to improve 
genome-based medicine.

Together, these findings indicate that ‘omics monitoring’, 
including genome sequencing, transcriptomic, immunohisto-
chemical and organoid-based tests, before and during treatment 
is necessary to choose and fine-tune WNT signaling-targeted 
therapeutics for the treatment of cancer patients (Fig. 3).

7. Conclusion

Cancer stem cells (CSCs) are part of the tumor microenviron-
ment and survive host defense or therapeutic insult through 
omics reprogramming. Aberrant WNT signaling activation in 
human cancers promotes CSC survival, bulk-tumor expansion 
and invasion/metastasis. Anti-FZD mAb, anti-ROR1 mAb, 
anti-RSPO3 mAb, PORCN inhibitors and β-catenin inhibitors 
are representative WNT signaling-targeted therapeutics in 
clinical trials or preclinical studies. WNT signaling-targeted 
therapeutics are applicable for combination therapy with tyro-
sine kinase inhibitors or immune checkpoint blockers. Omics 
monitoring is necessary for therapeutic optimization of WNT 
signaling-targeted therapy.
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