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Abstract. Protein kinase  B  (Akt), similar to many other 
protein kinases, is at the crossroads of cell death and survival, 
playing a pivotal role in multiple interconnected cell signaling 
mechanisms implicated in cell metabolism, growth and divi-
sion, apoptosis suppression and angiogenesis. Akt protein 
kinase displays important metabolic effects, among which 
are glucose uptake in muscle and fat cells or the suppres-
sion of neuronal cell death. Disruptions in the Akt‑regulated 
pathways are associated with cancer, diabetes, cardiovascular 
and neurological diseases. The regulation of the Akt signaling 
pathway renders Akt a valuable therapeutic target. The 
discovery process of Akt inhibitors using various strategies 
has led to the identification of inhibitors with great selectivity, 
low side‑effects and toxicity. The usefulness of Akt emerges 
beyond cancer therapy and extends to other major diseases, 
such as diabetes, heart diseases, or neurodegeneration. This 
review presents key features of Akt structure and functions, 
and presents the progress of Akt inhibitors in regards to drug 
development, and their preclinical and clinical activity in 
regards to therapeutic efficacy and safety for patients.
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1. Structure and function

Akt is a serine/threonine kinase previously known as protein 
kinase B (PKB), consisting of three isoforms (Akt1, Akt2 and 
Akt3), with a crucial role in major cellular functions including 
cell size, cell cycle progression, regulation of glucose metabo-
lism, genome stability, transcription, protein synthesis and 
neovascularization. Akt promotes cell survival by mediating 
the cellular growth factors and blocking apoptosis by the inac-
tivation of pro‑apoptotic proteins (1‑5).

From a structural point of view, Akt/PKB is characterized 
by its similarity to protein kinases A (PKA) and C (PKC), as 
well as to the retroviral oncoprotein viral akt (v‑akt) (6‑9). 
Structurally, Akt comprises three domains: An amino‑terminal 
(N‑terminal), a central and a carboxyl‑terminal fragment 
(C‑terminal). The N‑terminal domain, a pleckstrin homology 
(PH) one, consists of 100 amino acids and is similar to others 
found in 3‑phosphinositide binding molecules, interacting 
with membrane lipid products such as phosphatidylino-
sitol  (3,4,5)‑trisphosphate (PIP3) and phosphatidylinositol 
4,5‑bisphosphate (PIP2). The kinase domain is highly similar 
to the AGC protein kinases sharing a regulatory threonine 
residue, Thr308. The phosphorylation of this residue acti-
vates Akt. The C‑terminal groove consists of 40 amino acids 
forming a hydrophobic region, containing a regulatory serine 
residue, Ser473 (6).
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Upstream of molecular signaling pathways of Akt, are 
found systems generating PIP3 as an effect of the action of 
phosphoinositide 3‑kinase (PI3K) (10‑12). Three types of intra-
cellular lipid kinases are described (class I, II and III) based 
on their structure and substrate selectivity. Class I is divided 
into class IA (PI3Kα, β and δ) and class IB (PI3Kγ). The PI3Kγ 
kinases are heterodimers with a catalytic subunit (p110α, β, γ 
or δ) and a regulatory subunit (p85α, β or γ). Class IA PI3Ks 
(PIK3CA, PIK3CB and PIK3CD), are constituted from a p110 
catalytic unit and a p85 regulatory one, and are the most impor-
tant isoforms in cancer studies. PI3Ks are activated by different 
agents; PI3Kα, β and δ are activated when the extracellular 
ligands bind to one of the transmembrane glycoproteins with 
enzymatic activity called receptor tyrosine kinases (RTKs), 
while PI3Kγ is activated by G‑protein‑coupled receptors 
(GPCRs) and by the RAS family of GTPases (13‑15).

The Akt cascade is activated by various signals including 
RTKs, integrins, B and T cell receptors, cytokine receptors and 
GPCRs throughPIP3 produced by PI3Ks. Akt is not directly 
activated by PIP3, which alters Akt configuration by binding to 
its PH region and recruits it to the plasma membrane allowing 
phosphoinositide‑dependent kinase‑1 (PDK1) to phosphorylate 
at Thr308 residue in the kinase domain (6,16‑18). The full acti-
vation of Akt requires a second phosphorylation at regulatory 
Ser473 (Fig. 1).

A number of kinases are known to be capable of phosphor-
ylating Akt at Ser473. These include PDK‑1, integrin‑linked 
kinase (ILK) or an ILK‑associated kinase and Akt itself (19). 
Binding proteins such as actin, Erk1/2, Hsp90, Hsp27 or 
Posh have been found to regulate the activity of Akt  (20). 
Members of the PI3K‑related kinase (PIKK) family, including 
DNA‑dependent protein kinase (DNA‑PK), can also phos-
phorylate Akt at Ser473 (2,10,11).

Phosphorylated Akt contributes to the phosphorylation of 
different proteins located either in the plasma membrane, in 
the nucleus or the cytosol, supporting cell growth and survival, 
among other cellular effects. Akt phosphorylates a large 
number of targets on RxRxxS/T consensus motifs (21). Such 
downstream targets of Akt phosphorylation are PRAS40, a 
component and regulator of mTOR complexes, the actin‑asso-
ciated protein palladin, the cell cycle inhibitors p21 (Cip1) and 
p27, and vimentin, all enhancing tumor motility, invasion and 
metastasis growth (22,23).

One of the key elements of the Akt network is the serine/thre-
onine protein kinase known as mammalian target of rapamycin 
(mTOR). mTOR can form two functionally distinct multipro-
tein complexes, mTOR complex 1 (mTORC1) by joining with 
regulatory‑associated protein of target of rapamycin (RAPTOR) 
and mammalian lethal with SEC13 protein 8 (mLST8). mTOR 
complex 2 (mTORC2) contains the protein RICTOR which is 
insensitive to rapamycin, mLST8 and mammalian stress‑acti-
vated protein kinase interacting protein (mSIN1) (24,25). mTOR 
is a downstream member of Akt and a key regulator of cell 
growth and metabolism, but also an activator, mTORC2 directly 
phosphorylating Akt's hydrophobic motif Ser473 (26). Ser473 
phosphorylation enhances Akt kinase activity and facilitates the 
Thr308 phosphorylation by PDK1 (27).

The Akt pathway intercedes cell growth and survival by 
influencing the tuberous sclerosis complex (TSC) 1/2 along 
mTORC signaling and, respectively, by inhibiting pro‑apoptotic 

proteins or signals  (22,23,28,29). Activated Akt reduces 
the formation of TSC1/2 and thus blocks the activation of 
Rheb, a RAS family protein that activates mTORC1, which 
in turn, induces the phosphorylation of ribosomal protein S6 
kinase (S6K) and the eukaryotic translation initiation factor 
4E‑binding protein 1 (4E‑BP1). Phosphorylated 4E‑BP1 stimu-
lates the release of eukaryotic translation initiation factor 4E 
(eIF4E). Both S6K and eIF4E promote protein translation and 
cell proliferation (30‑32). The phosphorylation of TSC2 by Akt 
can dissociate the TSC1‑TSC2 complex, thereby activating 
mTORC1. When mTORC1 is activated, autophagy is inhib-
ited (33).

Akt directly regulates cell survival by inhibiting pro‑apop-
totic signals, such as Bad and Forkhead box  O  (FOXO) 
transcription factors. FOXO proteins activate or suppress the 
transcription of target genes through a highly conserved winged 
helix DNA‑binding domain and are regulated by several 
posttranslational modifications, such as phosphorylation, acety-
lation and ubiquitination (34). FOXOs activate the transcription 
of target genes to promote cell cycle arrest, cell death and 
cellular oxidative stress to maintain metabolic stability. Akt 
phosphorylates and inactivates the FOXO transcription factors, 
resulting in their nuclear exclusion and degradation in the cyto-
plasm, triggering cell survival. The decreased activity of FOXO 
blocks the transcription cyclin‑dependent kinase (CDK) inhibi-
tors p27 and p21, resulting in cell cycle progression (35,36). It 
also inhibits the extrinsic apoptotic pathway mediated by the 
transcription of proapoptotic factors such as Fas ligand (FasL) 
and TNF‑related apoptosis‑inducing ligand (TRAIL) (16,37).

There are some systems responsible for turning off Akt. Akt 
is dephosphorylated by protein phosphatase 2A (PP2A) and the 
PH domain leucine‑rich repeat‑containing protein phosphatases 
(PHLPP). PP2A preferentially dephosphorylate Akt at Thr308 
residue, but under certain conditions it can also dephosphorylate 
the Ser473 residue (38). Although PHLPP1 and PHLPP2 both 
dephosphorylate the Ser473 residue, they differentially stop the 
signaling by regulating distinct Akt isoforms; PHLPP1 specifi-
cally modulates the phosphorylation of HDM2 and glycogen 
synthase kinase (GSK)‑3α by Akt2, whereas PHLPP2 regulates 
the phosphorylation of p27 by Akt3 (39).

Phosphatase and tensin homolog (PTEN) is the most 
important negative regulator of Akt function and its meta-
bolic downstream effects. The phosphatase activity of PTEN 
functions as an antagonist of PI3K, dephosphorylating PIP3 
in position 3' to form PIP2 (40,41). Mutations leading to the 
amplification of genes in the receptor‑PI3K pathway, and also 
the loss of function of PTEN are found frequently in cancer 
tissues, resulting in pathologically enhanced PI3K signaling 
and the loss of cell growth control by decreased apoptosis (36).

The PI3K/Akt/mTOR pathway is dysregulated in different 
diseases, such as solid tumors, immune‑mediated disease, 
idiopathic pulmonary fibrosis, cardio‑vascular disease, meta-
bolic impairments such as diabetes mellitus, and constitutes a 
promising therapeutic target (29,42,43).

2. Akt in malignant disease

The PI3K/Akt pathway has been intensively investigated in 
cancer due to its significant role in cell survival and anti‑apop-
totic mechanisms. Multiple pathogenic mechanisms, including 
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the loss of PTEN, mutations that activate the catalytic subunit 
of PI3K, the activation of RAS and growth factor receptors, or 
tge amplification of the genes encoding PI3K or Akt can lead 
to Akt hyperactivation in cancer cells (44).

Studies have proven that the Akt signaling pathway 
frequently malfunctions in various types of cancer and, in some 
cases, is associated with tumor aggressiveness. Many types 
of human cancer are associated with the upregulation of Akt. 
Anomalies of Akt genes were described for a varie ty of human 
cancers; Akt1 gene amplifications have been reported in gastric 
carcinoma, glioblastomas and gliosarcomas, whereas Akt2 
amplification has been identified in head and neck squamous cell 
carcinoma, pancreatic, ovarian and breast cancers (45). Several 
studies have reported upregulated Akt3 expression in androgen 
resistant prostate cancer cells, estrogen receptor‑deficient breast 
cancer cells, and in primary ovarian cancers (46,47).

Several of the proteins involved in the Akt signaling pathway 
(eIF4E, periostin, both the p110α and p85α subunits of PI3K), 
when overexpressed, can function as oncoproteins, while the 
ones involved in quenching this pathway (PTEN, FOXO and 
TSC1/2) may constitute tumor suppressors (6,16,48). PTEN 

activity can be impaired by various mechanisms, including 
but not limited to, somatic mutations, homozygous deletions, 
epigenic silencing through gene promoter methylation, or 
post‑transcriptional modifications (49). PTEN somatic muta-
tions are described in a large percentage of human cancers, 
with the highest frequency in endometrial cancers, glioma, 
colorectal cancers, melanoma and prostate cancers (45).

Autophagy is one mechanism through which cells can 
move towards programmed cell death. Literature data indicate 
that there are multiple links between impaired autophagy and 
cancer, autophagy being a mechanism of tumor suppression. 
The Akt activated mTOR signaling pathway negatively regulates 
autophagy; this constitutes a pharmacological target, as anti-
cancer molecules blocking the PI3K/Akt/mTOR signal promote 
autophagy progression, and also reduce angiogenesis (33,50). In 
this context, recent research has proven that anti‑inflammatory 
molecules (aspirin, celecoxib, meloxicam, or indomethacin) may 
be useful tools in dealing with tumors as they have the ability to 
interact with these signaling pathways (50‑52).

In addition, the overexpression of Akt is linked to resistance 
to chemotherapeutic agents such as cisplatin, methotrexate or 

Figure 1. Regulation and downstream effects of the Akt signaling pathway.
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paclitaxel  (53). Cisplatin‑induced DNA damage causes the 
phosphorylation of BAD via Akt, suppressing its apoptotic 
effect (54). This observation can be capitalized as a prom-
ising strategy for synergic cancer therapy. The Akt inhibitor, 
MK‑2206, has been shown to improve the effectiveness of 
cisplatin in the gastric cancer cell line, AGS (55), and against 
the ovarian cancer cell line, SKOV3 (56). MK‑2206 demon-
strated similar synergic effect in combination with paclitaxel 
in SKOV3 cells  (56). A low PTEN expression is a good 
predictor of poor responses to human epidermal growth factor 
receptor (HER2) antagonist therapies and it has been hypoth-
esized that Akt inhibitors can overcome the development of 
resistance (57,58).

The importance of Akt in cancer pathologies renders it a 
much pursued target for anticancer therapy, and multiple drug 
discovery programs focus on finding selective and potent 
inhibitors. One of the mains issues counteracting drug design 
efforts consists of achieving selectivity over structurally 
similar protein kinase, particularly towards the AGC kinase 
family. The existence of three isozymes with distinct func-
tion, tissue distribution and ligand affinity also obstructs the 
research. The target‑based drug development of Akt‑specific 
and isoform‑selective inhibitors using the catalytic domain has 
been predicted to be difficult due to high sequence homology, 
determining alternative and novel approaches to identify allo-
steric inhibitors (29,44).

In an extensive review, we proposed a new classification of 
the Akt inhibitors based on the binding mechanism related to 
adenosine triphosphate (ATP) and on their main chemical scaf-
fold (29). The Akt inhibitors advanced from ATP‑competitive 
agents to ATP non‑competitive inhibitors binding to allosteric 
sites in order to solve the high structural similarity in the 
catalytic domain between Akt isoforms and considerable 
structural analogy to the AGC kinase family (29,59).

The majority of Akt inhibitors targeting the ATP binding 
site are non‑selective against the three isoforms, and poorly 
selective against structurally similar kinases  (60). Akt1‑3 
share a high ATP‑binding site homology with S6K1 (84%), 
PKA (81%), PKC (78%), SGK (78%), PRKX (75%), PKN1 (75%) 
and Aurora A (72%) (43). The ATP‑competitive inhibitors of 
Akt can be chemically described as isoquinoline‑5‑sulfon-
amides, azepane derivatives, aminofurazans, heterocyclic 6‑5 
fused rings, phenylpyrazoles, thiophene carboxamides and 
thiazole carboxamides (29).

The ATP non‑competitive Akt inhibitors are allosteric 
modulators, the binding mechanism offering important advan-
tages, as greater specificity, reduced side‑effects and lower 
toxicity (43). Chemically, they are categorized as 2,3‑diphe-
nylquinoxaline and analogs, alkylphospholipids, derivatives of 
indole‑3‑carbinol, sulfonamides, thiourea deratives and purine 
derivatives. A special class of ATP non‑competitive are the irre-
versible inhibitors that interact covalently with the enzyme (29).

Current pre‑clinical and clinical data suggest that the 
use of an intermittent high‑dose posology is more effective 
than a continuous low dose by daily administration. The high 
doses are required for induction of apoptosis and pauses can 
overcome the toxicological risks. Also, data shows a delay in 
treatment resistance mechanisms. The combination with other 
targeted therapeutic agents further enhances the antitumor 
activity of Akt inhibitors (42,61).

3. Neurological diseases

Early observation associated with increased amounts of gluta-
mate with excitotoxicity and neural cell death have opened and 
facilitated the development of treatments for glutamate‑related 
disorders, such as Alzheimer's disease (AD), parkinsonism, 
epilepsy, or multiple sclerosis  (62). The overstimulation of 
glutamate receptors (GluRs) and other post‑synaptic signaling 
components results in excitotoxicity. It is considered that 
N‑methyl‑D‑aspartate (NMDA) subtypes play a major role, 
and other GluR subtypes such as acid 2‑amino‑3‑(3‑hy-
droxy‑5‑methylisoxazol‑4‑yl)propionic (AMPA) or kainate 
receptors play a critical role in the excitotoxic neuronal cell 
death process (63). Reversely, the stimulation of metabotropic 
GluR1 (mGluR1) exerts neuroprotectives effect by reducing 
nerve cell death induced by exposure to NMDA (64,65).

AD is a progressive neurodegenerative disease character-
ized by the alteration of memory and cognitive functions, 
and is caused by the damage of neurons. Post‑mortem 
histopathological examinations have revealed extracellular 
amyloid  β  (Aβ) plaques and intracellular neurofibrillary 
tangles as hallmark lesions of AD. It has been demonstrated 
that an elevated GSK‑3β activity is directly linked to increased 
levels of Aβ production and deposits, tau hyperphosphoryla-
tion and the formation of neurofibrillary tangles  (66,67). 
GSK‑3β is rendered inactive when it is phosphorylated at Ser9 
by phosphorylated Akt, and therefore an upregulation of Akt 
may contribute to a decrease in AD progression. This hypoth-
esis is associated with the neurotoxic effect of wortmannin, 
an inhibitor of PI3K that induces tau hyperphosphorylation 
similar to that observed in AD following incubation in hippo-
campus slice culture. Lithium chloride, a GSK‑3β inhibitor, 
prevents the neurotoxic effects of wortmannin (68).

The treatment of hippocampal and cerebral cortical cell 
cultures with toxic doses of NMDA has been shown to cause a 
significant decline in phosphorylated Akt levels and phosphor-
ylated GSK‑3β, without caspase‑3, caspase‑7, or poly(ADP)
ribose polymerase (PARP) cleavage; the total levels of Akt 
and GSK‑3β were not shown to be affected (69). Excessive 
NMDA activity has been demonstrated to cause excitotoxicity, 
promoting cell death, a probable mechanism of neurodegen-
eration in AD, in agreement with the GSK‑3β hyperactivation 
hypothesis (70). The role of Akt hypofunction in AD has been 
demonstrated by several studies on PTEN regulation (71,72). 
Okadaic acid leads to PTEN activation in SH‑SY5Y cells 
associated with an increase in tau phosphorylation, an effect 
that can be blocked by PTEN knockdown (73).

The elevation of Akt activity has emerged as a effective 
strategy with which to prevent progressive neuronal death 
in neurological diseases. The 4H‑chromene‑3‑carboxylate 
derivative, SC79, was identified as a specific pan‑Akt activator. 
SC79 specifically binds to the PH domain of Akt, leading to 
a conformation favorable for phosphorylation by upstream 
protein kinases, without altering total Akt levels. The treat-
ment of cultured cortical neurons with SC79 has been shown 
to markedly enhance Akt phosphorylation and reduce neuronal 
death elicited by glutamate excitotoxicity in hippocampal 
neurons. SC79 effectively reduced the neocortical lesion size 
by 35% after a single dose of 0.04 mg/g of body weight in a 
murine ischemic stroke model (74).
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The inhibition of PTEN function in conditions associated 
with neurodegeneration, tissue injury or ischemia may be a 
valuable pharmacological intervention with which to activate 
Akt function. Bisperoxovanadium compounds are reversible 
and relatively specific small PTEN inhibitors, with nanomolar 
affinity and have been experimentally explored as a potential 
therapeutic approach in AD and other neurological diseases (75).

Parkinson's disease (PD) is a chronic and progressive 
neurodegenerative disorder characterized by the premature 
death of dopaminergic neurons in the substantia nigra (76). 
Oxidative stress is a major cause of PD pathogenesis, 
inducing neuronal cell death and apoptosis by intracellular 
calcium overload, lipid peroxidation, DNA damages and 
excitotoxicity.

The activation of Akt has been shown to efficiently protect 
neurons or neuronal cells from oxidative stress and is an estab-
lished target of drug design in PA. Pre‑treatment of human 
dopaminergic neuronal cells with the specific Akt activator, 
SC79 (10 µM), was previously shown to markedly attenuate 
hydrogen peroxide‑induced toxicity. The neuroprotective 
effect of SC79 was abolished by Akt inhibitors (77).

Sulfuretin, a trihydroxyaurone isolated from the bark of 
the lacquer tree (Toxicodendron vernicifluum), was previously 
shown to significantly decrease apoptotic cell death induced by 
the 1‑methyl‑4‑phenylpyridinium (MPP+) in an experimental 
model of PD. Sulfuretin reduced caspase‑3 and PARP activity 
accompanied by a reduction of intracellular reactive oxygen 
species (ROS) production and recovered the normal mito-
chondrial membrane potential. The mechanism involved the 
augmentation of the phosphorylation of Akt, GSK‑3β and Erk 
pathway, confirmed by the disappearance of the cytoprotective 
effects of sulfuretin following the administration of PI3K/Akt 
and Erk inhibitors  (78). Vitexin, a glucoside derivative of 
apigenin and several other flavonoids had similar protective 
effects on cell and mouse models of PD (79).

4. Insulin signaling and diabetes

Akt is involved in the insulin signaling pathway; the activa-
tion of the insulin receptor triggers a phosphorylation cascade, 
initiated by receptor autophosphorylation and the activation of 
insulin receptor substrate proteins (IRS‑1 and IRS‑2), recruiting 
PI3K that phosphorylates PIP2 to PIP3. Membrane‑anchored 
PIP3 activates Akt, thus contributing to the translocation of the 
glucose transporter 4 (GLUT4) at the membrane level (80,81). 
Similarly to insulin, members of the family of insulin‑like 
growth factors (IGF) activate PI3K to produce PIP3, which, in 
turn, recruits two protein kinases to the plasma membrane via 
their PH domains Akt and PDK1, leading to Akt activation (81). 
Akt2 and its downstream effectors control the insulin‑stimu-
lated translocation of GLUT4 to the plasma membrane. The 
most important are AS160, a Rab GTPase‑activating protein, 
CDP138, a C2 domain‑containing phosphoprotein, and an 
actin‑capping protein, tropomodulin 3 (82,83).

The downstream steps determining the effects of insulin 
on target tissues, including glucose uptake in skeletal muscle 
and adipose tissue, and hepatic gluconeogenesis are controlled 
by Akt2. Glycogen synthesis is regulated by Akt phosphory-
lation and the inactivation of GSK‑3β, resulting in glycogen 
synthase activation (81).

Akt2 is highly expressed in insulin‑responsive tissues and 
is an important regulator of glucose metabolism. The deletion 
of Akt2 in knockout mice was previously shown to result in 
insulin resistance, hyperinsulinemia and glucose intolerance, 
whereas Akt1 or Akt3 knockout mice have a normal glucose 
metabolism (84). Leptin was shown to increase insulin sensi-
tivity in Akt‑deficient mice (85). Consistent with these studies, 
defects in the kinase domain of Akt2 are associated with 
insulin resistance and diabetes in humans (86). Conversely, 
an activating mutation of Akt2 in humans was reported and 
was shown to be associated with severe insulin‑independent 
hypoglycemia and asymmetric overgrowth (87) and a lower 
risk of diabetes was observed in individuals with PTEN haplo-
insufficiency (81).

Insulin is also a potent neurotrophic factor and the acti-
vation of the insulin receptors, highly expressed in sensory 
neurons, enhances axon growth through the stimulation of the 
PI3K/Akt pathway and counteracts diabetic polyneuropathy 
symptoms. Recent research considers that an important 
strategy for reversing the neuropathic deficits of diabetic 
neuropathy may be either the activation of intrinsic PI3K/Akt 
signaling or the inhibition of the PTEN effect (80,81). As in the 
case of AD, various vanadium compounds have been proven 
to reduce blood glucose in diabetic rats (88,89). Although he 
systemic long‑term PTEN pharmacological inhibition is likely 
to promote cancer, it is possible that a tissue‑specific inhibition 
may be beneficial in type 2 diabetes treatment (75).

Another strategy which can be used to enhance Akt 
signaling to potentially overcome insulin resistance, is the inhi-
bition of PHLPP. The strategy is enforced by the observation 
that the levels of PHLPP1 are highly elevated in the skeletal 
muscle of obese humans, and are associated with the increased 
body mass index and insulin resistance. Additionally, PHLPP1 
mRNA levels are elevated in muscle cells from diabetic 
patients (40). Two specific inhibitors of PHLPP2 were identi-
fied in a virtual screening coupled with biochemical assays, a 
derivative of aminoanthraquinone and a diazenyl derivative of 
salicylic acid. Both compounds inhibit the dephosphorylation 
of Akt on Ser473 at micromolar doses and have the potential 
to improve insulin secretion (90).

Statins are HMG‑CoA reductase inhibitors intensively 
used to reduce cholesterol levels in a wide range of patient 
populations. Several studies have demonstrated that statin 
use is associated with an increased risk of developing type 2 
diabetes mellitus by the reduction of insulin secretion and the 
induction of insulin resistance. These effects are produced 
by decreasing GLUT‑4 levels and the inhibition of GSK‑3β, 
p38 MAPK and Akt phosphorylation (91,92). Statin treat-
ment profoundly affects signaling through Akt in several 
cell models. Simvastatin and atorvastatin have been shown to 
inhibit Akt activation and to be cytotoxic in mouse myoblast 
cell line at doses of 10 µM, while for rosuvastatin the dose is 
50 µM (92,93). These studies highlight the importance of the 
Akt signaling pathway in both statin‑induced myotoxicity and 
diabetes, as well as the anticancer effects of statins.

5. Involvement of Akt in cardiovascular events

In a number of physiological and pathological cardiovascular 
processes, such as vessel remodeling, atherosclerosis and 
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vascular injury, apoptotic cell death was identified as a major 
common factor leading to a close analysis of the Akt network 
involvement. Akt activation stimulates downstream anabolic 
signaling, favoring cell growth, proliferation and survival; this 
is a desired effect for cardiac cells, whose metabolic improve-
ment following the stimulation of Akt may also alleviate cardiac 
cellular damage (94).

Akt1 plays an important role in the regulation of cardiac 
hypertrophy and angiogenesis, as the absence of Akt1 leads to 
severe atherosclerosis and occlusive coronary arterial disease, 
associated with significant reduction in NO production and 
endothelial cell viability. It was observed that atherosclerosis 
results in the reduction of Akt expression and phosphorylation 
in plaque intimal vascular smooth muscle cells and an increased 
expression of active FOXO3a. An ectopically activated Akt 
was used to demonstrate that Akt activation is sufficient for the 
survival of vascular smooth muscle cells in response to oxidative 
stress. The PI3K/Akt pathway can stimulate NO production by 
endothelial cells and increase the synthesis of prostacyclin, thus 
leading to vasodilation and retarding atherogenesis (94‑96).

Akt2 is also involved in multiple functions in the cardio-
vascular system due to its abundance in insulin‑responsive 
tissues. Mice lacking Akt2 present with hyperglycemia and 
dyslipidemia with high levels of triglycerides and cholesterol, 
although the absence of Akt2 does not influence the progres-
sion of atherosclerosis in mice (95).

The PI3K/Akt pathway is involved in cardioprotection by 
various mechanisms, such as the heat shock protein  (HSP) 
90‑mediated protection of cardiomyocytes subjected to hypoxia 
or the estrogen receptor (97). Studies using mouse models have 
shown that a reduced activation of the PI3K p110α catalytic 
subunit increases the risk of atrial fibrillation. Conversely, the 
augmentation of Akt activity in murine models of heart failure 
has been shown to improve cardiac function (98,99). These 
findings explain why some anticancer protein kinase inhibitors, 
such as ibrutinib and nilotinib, increase the occurrence of atrial 
fibrillation and drug‑induced long QT syndrome (98,100).

It is hypothesized that the PI3K/Akt signaling pathway may 
provide a solution for addressing proarrhythmia by regulating 
cell proliferation and survival through the PIP3 activation of 
downstream signals; nevertheless, an increased activity of 
PI3K/Akt signaling may lead to cancer development (100).

6. Pulmonary fibrosis

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive 
lung disease, one of the most common types of interstitial pneu-
monia associated with high morbidity and mortality. In normal 
lung fibroblasts, the interaction with type I collagen, suppresses 
the PIP3K/Akt pathway, through the activation of PTEN, thus 
inhibiting cell proliferation and promoting fibroblast apoptosis. 
Pathologically, in fibroblasts from patients with IPF, PI3K/Akt 
activity is enhanced due to the suppression of PTEN, rendering 
the cells highly proliferative and resistant to apoptosis (101‑103). 
It has been demonstrated that the low activity of PTEN is caused 
by the decline of the caveolin‑1 and FOXO3a levels (104,105).

Previously, a model of pulmonary fibrosis was used in rats 
following the intratracheal administration of bleomycin, and it 
was demonstrated that the high levels of phosphorylated Akt 
were involved in the progression of pulmonary fibrosis and 

contributed to fibrogenesis (106). Tubastatin, a known histone 
deacetylase 6 (HDAC6) inhibitor, has been shown to protect 
mice against bleomycin‑induced fibrosis by decreasing Akt 
phosphorylation and increasing Akt association to PHLPP, 
independent of its HDAC6 effects (107).

7. Akt in inflammation and autoimmune diseases

Autoimmune diseases occur when the immune system 
mistakenly recognizes self‑tissues as foreign and triggers an 
immune response. The autoreactivity of the immune system 
is multifactorial and may lead to pathogenic autoimmunity 
and is related autoimmune diseases (108). Although the exact 
mechanisms of the pathogenesis of autoimmune diseases 
remain unclear, the over activation and abnormal function 
of T cells, B cells and myeloid cells has been extensively 
studied (109‑111). Systemic lupus erythematosus (SLE) is a 
systemic autoimmune disease characterized by the high hyper-
activity of T cells and B cells, which result in the production 
of antinuclear, anti‑double‑stranded DNA and anti‑glomerular 
antibodies, nephritis, renal failure and mortality (112).

Patients with SLE are characterized by the activation of 
mTORC1 and reduced mTORC2 levels, promoting the expres-
sion of pro‑inflammatory cytokines, and the deletion of the 
regulatory T cell subtype that normally regulates inflamma-
tion (113). To further explore the underlying mechanisms of 
SLE, researchers have used mice that are characterized by the 
constitutive activation of the PI3K pathway in T lymphocytes 
and found that these mice develop SLE‑like diseases (114). The 
increased activation of mTORC1 has also been reported in the 
T cells of patients suffering from multiple sclerosis (115). In a 
study on patients with rheumatoid arthritis, Zhang et al found 
significantly higher levels (~4‑fold) of p‑Akt in fresh syno-
vial tissue isolated from these patients (116). These findings 
highlight the central role of the Akt pathway in autoimmune 
diseases. It has been suggested that alterations in the PI3K/Akt 
axis found in highly active immune cells are mediated through 
metabolic changes in these cells (117).

Studies now focus on the therapeutic potency of molecules 
that target the PI3K/Akt pathway for the treatment of autoimmune 
diseases. Indeed, rapamycin, which inhibits the antigen‑induced 
proliferation of T cells through the inhibition of mTOR, has 
been shown to exert beneficial effects in experimental models 
and patients with autoimmune diseases (118,119). Although 
there are several challenges that need to be tackled, the further 
exploration of this pathway may lead to the identification of 
disease biomarkers and therapeutic targets (120).

In Table I the main pathways that could be modulated by 
different molecules interfering with Akt signaling are reviewed.

8. Repurposing studies

Drug repositioning is a highly studied alternative using avail-
able drugs for the treatment of various conditions in order to 
discover novel therapeutic opportunities. This strategy is also 
used on the Akt pathway, capitalizing the lower toxicological 
risk of known drugs. Ivermectin is a macrocyclic lactone used 
as an antiparasitic drug that has been shown to significantly 
decrease Akt phosphorylation at Ser473. This result could 
allow its clinical investigation for cancer patients (121). Another 
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antiparasitic drug, artesunate, may be useful in nasopharyngeal 
carcinoma by inhibiting Akt (122). Recent research has demon-
strated the potential of propofol, an intravenous anesthetic drug, 
to be repurposed to overcome resistance to imatinib in chronic 
myeloid leukemia treatment (123). Cimetidine, a drug used in the 
treatment of peptic ulcers, induces the apoptotic death of chol-
angiocarcinoma cells by the suppression of Akt phosphorylation 
and may be an effective candidate for future treatments (124). 
A well‑known antifungal agent, itraconazole, has demonstrated 
anticancer activity in various cell lines by inhibiting Akt/mTOR 
signaling (125). Quetiapine, an atypical antipsychotic, decreases 
the level of certain pro‑inflammatory cytokines, such as inter-
leukin (IL)‑17, IL‑6 and IL‑1β in mouse model of arthritis by 
suppressing the Akt and Erk pathways (126).

9. Natural products targeting the Akt pathway

Plants and natural products are used as complementary or 
alternative therapies for cancer treatment, as a large number of 
patients consider them safer and less toxic (127,128). Curcumin, 

the main curcuminoid found in Curcuma longa, has showed 
beneficial results regarding the inhibition of human malignant 
glioma cells by inducing autophagic cell death. The mecha-
nisms implicated are the inhibition of the Akt/mTOR/p70S6K 
pathway and the activation of Erk1/2 pathway, and these have 
been demonstrated in in vitro and in vivo experiments (129). 
Lycopene, a carotenoid pigment found in tomatoes, has been 
shown to exert antitumorgenic effects on human colon cancer 
HT‑29 cell lines, partly through the inhibition of Akt phos-
phorylation (130). Lupeol is a triterpenoid compound found 
in mango, dandelion and several other species of Acacia visco 
and Abronia villosa. Lupeol and its acetyl derivative have been 
shown to inhibit the proliferation and induce the apoptosis of 
human pancreatic cancer and chemoresistant prostate cancer 
cells by decreasing the levels of p‑Akt and p‑Erk (131). The 
chemically similar tirucallic acids isolated from the oleogum 
resin of Boswellia carterii inhibit Akt in prostate cancer cells 
by bonding within the PIP3 binding pocket (132).

As mentioned above, several flavonoid compounds, such as 
sulfuretin and apigenin, have been proven to target Akt. Jaceosidin 

Table I. Possible mechanism for Akt modulation used in clinical and preclinical settings.

Pathology models		  Molecules involved
associated with	 Signaling pathway	 in modulating
Akt impairment	 injury	 intracellular pathways	 (Refs.)

Malignant disease 	 Loss of PTEN activity, including	 Isoquinoline-5-sulfonamides,	 (30,45,46,
(carcinomas, glioblastoma,	 mutations involving PTEN	 azepane derivatives, aminofurazans,	 49-51,52-56)
hematological malignancies,	 mutations activating the catalytic	 heterocyclic 6-5 fused rings,
gastric carcinoma, 	 subunit of PI3K, activation of RAS	 phenylpyrazoles, 
glioblastomas and	 and growth factor receptors,	 thiophenecarboxamides and
gliosarcomas, head	 amplification of the genes	 derivatives 2,3-diphenylquinoxaline
and neck squamous	 encoding PI3K and Akt	 and analogs, alkylphospholipids,
cell carcinoma, pancreatic,	 impairment of proteins involved	 indole-3-carbinol derivatives,
ovarian, skin, prostate	 in the Akt signaling pathway	 sulfonamides, thiourea deratives,
and breast cancers)	 impairment of PI3K/Akt/mTOR	 and purine derivatives
	 regulated autophagy	 anti-inflammatory molecules
		  (aspirin, celecoxib, meloxicam,
		  or indomethacin) MK-2206

Neurological disorders	 Elevated GSK-3β levels	 Lithium chloride okadaic acid	 (63-65,68,69,
(Alzheimer's, Parkinson's,	 (due to Akt inhibition)	 4H‑chromene-3-carboxylate	 70,75,76)
and Huntington's disease,	 overactivation of PTEN	 derivative (SC79),
epilepsy and		  bisperoxovanadium compounds
multiple sclerosis)		  sulfuretin and vitexin

Insulin resistance, 	 Deletion of Akt2	 Vanadium compounds	 (41,85,86,87)
hyperinsulinemia, and	 inhibition of PI3K-Akt
glucose intolerance, diabetic	 signaling PTEN activation
polyneuropathy symptoms	 inhibition of PHLPP

Cardiovascular disease 	 Inhibition of Akt1 reduction	 Anticancer protein	 (91-93,95-97)
(vessel remodeling,	 of Akt expression and	 kinase inhibitors
atherosclerosis, etc.)	 phosphorylation overexpression	 (ibrutinib and nilotinib)
	 of active FOXO3a

Idiopathic pulmonary	 PTEN suppression	 Tubastatin	 (98-100,
fibrosis	 Activation of mTORC1		  101,103)
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is a flavone from Artemisia princeps, a traditional medicinal herb, 
with a marked effect on oral squamous cell carcinoma by Akt 
downregulation (133). The antiproliferative and antiinflammatory 
effect of luteolin via the inactivation of PI3K/Akt pathway has 
also been demonstrated by several studies (134,135).

Euplotin C is a secondary metabolite of the marine ciliate 
Euplotes crassus that has demonstrated marked cytotoxic 
effects on human cutaneous melanoma cells via the inhibition 
of the Erk and Akt pathways (136). A large diversity of plant 
extracts have demonstrated promising anticancer properties 
in various cell lines, such as Libidibia ferrea and Celastrus 
orbiculatus in colorectal cancer (137,138), Astragalus membra-
naceus, Anthriscus sylvestris and Vernonia amygdalina in 
breast cancer cells (139‑141), Azadirachta indica in prostate 
cancer (142), and Fallopia aubertii and Fallopia convolvulus 
in cervical cancer cells (143), and these may represent future 
sources of leading Akt inhibitors. The usefulness of the natural 
sources is not limited to oncology. Bamboo leaf extract admin-
istered for a period of 12 weeks to diabetic rats has been shown 
to improve body weight and biochemical markers, and to alle-
viated renal injury by increasing p‑Akt levels (144,145). Similar 
properties were observed for sea buckthorn fruit oil extract and 
the traditional Chinese medicine Liuwei Dihaung (146,147).

10. Akt inhibitors in clinical studies

Several compounds have been proven to inhibit Akt in in vitro 
and in vivo models, but only a small number have entered 
clinical evaluation, and yet no Akt inhibitor has been approved 
for anticancer therapy (148). Miltefosine is approved for the 
oral treatment of both visceral and cutaneous leishmaniasis, 
but not for oncological use (149).

GSK690693 was the first clinically evaluated Akt inhibitor. 
In preclinical experiments, GSK690693 was shown to inhibit 
all three isoforms at nanomolar concentrations and to signifi-
cantly inhibit the growth of various tumors in mouse xenograft 
models. Despite the encouraging preclinical data, the clinical 
development of the agent was halted due to drug‑related hyper-
glycemia and peripheral insulin resistance (150,151).

AZD5363 is a pyrrolopyrimidine derivative that inhibits all 
Akt isoforms with nanomolar affinity, and inhibits the prolif-
eration of a large number of solid and hematological tumor 
cell lines, with the highest therapeutical potential in breast 
cancer cells (152). The safety and tolerability of AZD5363 
as oral monotherapy was evaluated in an open‑label study 
(NCT01226316) on 90 patients with advanced solid malignan-
cies. The patients received 320, 480 or 640 mg in a continuous 
or intermittent schedule. The most frequently reported adverse 
effects in all dosing schedules were diarrhea, nausea and 
vomiting. A total of 56 (62%) patients experienced grade 3 
adverse events, such as hyperglycemia (20%), diarrhea (14%) 
and rash (11%). An adverse event leading to discontinuation 
was reported in 23% of the patients (153).

AZD5363 is under clinical evaluation as a short‑term 
monotherapy in estrogen receptor‑positive breast cancers 
(NCT02077569), and in non‑small cell lung cancer 
(NCT02664935). It has been evaluated in combination with 
other anticancer drugs in various clinical trials (153,154).

Ipatasertib belongs to the heterocyclic 6‑5 fused rings 
class of ATP‑competitive inhibitors. In a phase  I study 

(NCT01090960), the safety and tolerability in patients 
with refractory solid tumors was evaluated following orally 
administration of ipatasertib at daily doses from 25 to 800 mg. 
Ipatasertib was well tolerated, the most frequently reported 
adverse events of grade  2 or above were diarrhea  (35%), 
nausea (27%), asthenia (25%), hyperglycemia (10%), decreased 
appetite (6%), rash (6%) and vomiting (6%). The maximum 
tolerated dose (MTD) for ipatasertib is 600 mg on a once daily, 
21/7 dosing schedule (155).

The combination of ipatasertib (400 mg daily) and pacli-
taxel (80 mg/m2 weekly) was well‑tolerated in a phase  II 
study (NCT02301988) designed to estimate the efficacy in 
women with triple‑negative breast cancer (42). A double‑blind 
placebo controlled randomized phase II trial (NCT02162719) 
demonstrated that the combination modestly improved the 
progression‑free survival endpoint, the results being prominent 
in the patients with PIK3CA/Akt1/PTEN alterations (156).

Afuresertib (GSK2110183) is a thiophenecarboxamide 
derivative, orally bioavailable Akt inhibitor, with higher 
potency against Akt1 compared to Akt2 and Akt3  (157). 
An open‑label phase I clinical study (NCT00881946) evalu-
ated afuresertib in 73 patients with advanced hematologic 
malignancies. All patients enrolled in the study experienced 
at least one adverse event, the most frequent being nausea, 
diarrhea, dyspepsia, fatigue, gastrointestinal reflux disease and 
anorexia. Treatment‑related adverse events of grade 3 had a 
frequency under 10% and included neutropenia, rash, odyno-
phagia, fatigue and asthenia, abnormal liver function test and 
thrombocytopenia. No grade  4 or 5 adverse events were 
observed. Afuresertib produced a small impact on glycaemia, 
due to the selectivity towards PKC (158). In a phase IIa study 
(NCT1395004), 17 patients with Langerhans cell histiocytosis 
received daily oral doses of 125 mg. The majority of the 
reported adverse events were grade 1 or 2 and consisted on 
nausea (59%), fatigue (53%), diarrhea (47%) and upper respira-
tory infection (47%) (159).

Uprosertib (GSK2141795) is closely related to afuresertib, 
the main difference being the replacement of the thiophene 
with a bioisostere furan ring  (29). The safety, tolerability, 
pharmacokinetics, and pharmacodynamics of the drug were 
evaluated in a phase  I, open‑label study in patients with 
solid tumors. Uprosertib was safe and well‑tolerated, most 
treatment‑related adverse events were low grade and included 
diarrhea, fatigue, vomiting and decreased appetite (160).

MK‑2206 is an orally effective, highly potent and selective 
allosteric pan‑Akt inhibitor (150). Based on a phase I study of 
MK‑2206 (NCT00670488) the MTD value was established 
at 60 mg for an alternate days administration. Most frequent 
drug‑related toxicities recorded were skin rash  (51.5%), 
nausea  (36.4%), pruritus (24.2%), hyperglycemia  (21.2%) 
and diarrhea  (21.2%). The main dose limiting toxicity is a 
dose‑dependent, generalized erythematous, nonblistering, 
maculopapular rash. This rash was observed also in other clin-
ical trials with MK‑2206 (161) and is similar to that produced by 
mTOR or PI3K inhibitors, but unlike those caused by epidermal 
growth factor receptor inhibitors indicating a mechanism‑based 
toxicity, and not an off‑target effect (162). It was investigated 
in several clinical trials. The potential use of MK‑2206 goes 
beyond oncology, demonstrating a significant reduction of 
plasma LDL‑cholesterol levels in cultured hepatic cells (163).
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Perifosine is an alkylphospholipid derivative that interferes 
with the PH domain of Akt rendering it incapable of phosphory-
lation and activation. Chemically, it resulted by replacing the 
choline moiety of miltefosine with a piperidine scaffold, leading 
to higher metabolic stabilityand better gastrointestinal tract 
tolerance because perifosine is not able to generate phosphocho-
line, responsible for the parasympathomimetic effects (29,164). 
Clinical trials using oral perifosine as a single therapy for 
various types of cancer have produced disappointing results. 
Several combinations of perifosine are yielded promising results 
and are undergoing clinical development (165).

SR13668 was designed as an Akt activation inhibitor based 
on the naturally occurring indole‑3‑carbinol. In preclinical 
safety testing, no toxic effects were observed in rats after a 
single oral dose of 1,000 mg/kg or multiple doses of 25 up to 
600 mg/kg/day for 14 days. In mice, doses up to 500 mg/kg 
had no effects on fasting glucose levels and body weight. It has 
a very low solubility which may hinder the future development 
of the drug (166,167).

Triciribine (API‑2, TCN, NSC 154020) is a tricyclic nucleo-
side that is metabolically activated inside cells by adenosine 
kinase to triciribine phosphate (TCN‑P) which binds to the PH 
domain near PIP3 binding pocket, preventing PDK1 phosphor-
ylation. TCN is highly selective towards Akt with no significant 
effect on PI3K, PKA or PKC (168,169). The antitumor effects of 
TCN‑P were known before the discovery of the Akt inactivation 
and were tested in several clinical trials. The therapeutic devel-
opment of TCN‑P limited by dose‑limiting toxicities, including 
reversible hyperglycemia, hepatic toxicity, thrombocytopenia, 
hypocalcaemia and high triglyceride levels (170,171). In order 
to circumvent the toxicities associated with TCN‑P, the clinical 
development has focused on tumors that express high p‑Akt 
levels (172).

Miransertib (ARQ 092) binds to the inactive Akt and 
inhibits non‑competitively all three isoforms at nanomolar 
concentrations and has excellent selectivity over other 
kinases (173). It is analyzed in several clinical trials for treat-
ment as single therapy or combinations of advanced solid 
tumors and recurrent malignant lymphoma. Positive results 
were obtained with miransertib in cells and tissues harboring 
Akt1 E17K mutations and is being investigated for patients 
with overgrowth diseases and/or vascular anomalies gener-
ated by genetic alterations of the PI3K/AKT pathway (174). 
Miransertib is under study as a potential therapy for Proteus 
syndrome, a disease characterized by progressive and typically 
asymmetric overgrowth caused by the Akt1 E17K somatic 
activating mutation during development (175).

BAY 1125976 is a highly selective, potent allosteric Akt 
inhibitor by blocking the PDK1 phosphorylation after binding 
in the pocket formed by kinase and PH domain. Chemically it is 
a imidazo[1,2‑b]pyridazine derivative, closely related to miran-
sertib. It inhibits cell proliferation in a panel of human cancer 
cell lines, especially in hormone dependent breast and prostate 
cancer cell lines. It is under investigation is a phase I study 
(NCT01915576) in patients with advanced solid tumors (176).

11. Conclusions

Akt is the core of a complex signaling pathway that is one 
of the most intensively investigated cell signaling networks 

due to its crucial involvement in cell metabolism, growth, 
proliferation, motility, survival and apoptosis. These plethora 
of effects render Akt a most valuable target of drug discovery. 
Even if cancer treatment is at the center of the research, the 
potential applications are numerous other major diseases, such 
as diabetes, heart diseases, or neurodegenerative diseases. 
The position of Akt at the crossroads between life and death 
rises multiple challenges, but increasing understanding of cell 
biology and accumulating promising results are raising hope 
to find personalized treatments.
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