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The emerging roles of CEACAMG6 in human cancer (Review)
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Abstract. Carcinoembryonic antigen (CEA)-related cell
adhesion molecule 6 (CEACAMBO) is a cell adhesion protein of
the CEA family of glycosyl phosphatidyl inositol anchored cell
surface glycoproteins. A wealth of research has demonstrated
that CEACAMG is generally upregulated in pancreatic adeno-
carcinoma, breast cancer, non-small cell lung cancer, gastric
cancer, colon cancer and other cancers and promotes tumor
progression,invasionand metastasis. Thetranscriptional expres-
sion of CEACAMBG6 is regulated by various factors, including the
CDI151/TGF-p1/Smad3 axis, microRNA (miR)-146, miR-26a,
miR-29a/b/c, miR-128, miR-1256 and DNA methylation. In
addition, the N-glycosylation of CEACAMBG6 protein at Asn256is
mediated by a-1,6-mannosylglycoptotein 6-f-N-acetylglucos-
aminyltransferase. In terms of downstream signaling path-
ways, CEACAM®6 promotes tumor proliferation by increasing
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levels of cyclin D1 and cyclin-dependent kinase 4 proteins.
CEACAMBG can activate the ERK1/2/MAPK or SRC/focal
adhesion kinase/PI3K/AKT pathways directly or through
EGFR, leading to stimulation of tumor proliferation, invasion,
migration, resistance to anoikis and chemotherapy, as well as
angiogenesis. This article provides a review of the expression
pattern, biological function and relationship with prognosis
of CEACAMGO in cancer. In summary, CEACAMG6 may be a
valuable diagnostic biomarker and potential therapeutic target
for human cancers exhibiting overexpression of CEACAMS6.
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1. Introduction

Carcinoembryonic antigen (CEA)-related cell adhesion mole-
cules (CEACAMSs) have 12 members with diverse functions
and biological processes, such as cell adhesion, intracellular
and intercellular signaling and shaping of tissue architec-
ture (1,2). All members are highly glycosylated proteins and
typically consist of one variable (V)-like Ig domain, known
as the N domain, except for CEACAMI16, which has two
N domains. However, they differ in the number of constant
C2-like Ig domains and the method of membrane anchorage.
CEACAMS, CEACAM6, CEACAM7 and CEACAMS are
linked to the membrane through a glycosyl phosphatidyl
inositol (GPI) linkage (3,4), while CEACAMI1, CEACAM3,
CEACAM4, CEACAMI19, CEACAM20 and CEACAM?21 are
anchored to the cellular membrane through transmembrane
domains. CEACAMI16, on the other hand, is a secreted version
without any membrane anchorage. The cytoplasmic domain of
CEACAMI contains immunoreceptor tyrosine-based inhibi-
tion motifs, while CEACAM3, CEACAM4, CEACAMI19 and
CEACAM?20 carry immunoreceptor tyrosine-based activation
motifs. The extracellular domains, comprising the N domain
and C2-like Ig domains, have a crucial role in the function-
ality of CEACAMs. These domains act as both homophilic
and heterophilic intercellular adhesion molecules (5), and
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also act as receptors for human and rodent pathogens (6,7).
CEACAMI1, CEACAM3, CEACAM6 and CEACAMS are
expressed on human neutrophils and the presence of related
antibodies has been shown to increase leukocyte adhesion to
human endothelial cells (3). These CEACAM proteins exist as
dimers and oligomers, allowing them to form multiple associa-
tions with other partners on the cell membrane. This ability
to interact with various partners helps regulate important
cellular functions. CEACAMBS, also termed CD66¢ (formerly
nonspecific cross-reacting antigen), is expressed in a variety of
normal tissues such as neutrophils (8) and columnar epithelial
and goblet cells of the colon (9). It is upregulated in numerous
oncological processes, such as those of pancreatic, lung and
colon cancers. CEACAM6-associated carcinogenesis mainly
includes promotion of abnormal proliferation, invasion,
migration, angiogenesis, anti-apoptosis and resistance to
chemotherapeutic drugs. Tumor model studies showed that
targeting CEACAMG had a positive effect on the treatment and
diagnosis of tumors with high expression of CEACAMG6 (10).
The present article reviews the expression, regulatory function
and mechanism of CEACAMBS in various cancers. Based on
this, the potential clinical value of CEACAMBS in the diag-
nosis, treatment and prognosis of cancer was also discussed.

2. Overview of CEACAMG6

The CEACAMBS6 gene is located at the 19q13.2 site of human
genome and the coding region is composed of 6 exons with only
one transcript encoding 344 amino acids in total. CEACAM6
consists of an N-terminus Ig-like V-type domain, 2 N-terminus
IgC-like domains and a membrane-linked glycoprotein. The
extracellular N-terminus Ig-like V-type domain is necessary
for homophilic and heterophilic intercellular adhesion (10-12).
CEACAMBG is anchored in the cell surface by the transmem-
brane domain of the membrane-linked glycoproteins.

In response to changes in the environment, numerous cell
surface molecules, including adhesion molecules, can transmit
information from the environment to the cell interior through
signal transduction. Glycosylation may regulate membrane
protein folding, which alters receptor activation and changes
epitope exposure for antibody recognition (13). This provides
a clue that CEACAMS6 does not have transmembrane or
intracellular structural domains and affects intracellular
signaling. For instance, neutrophil CEACAMG6 signaling
regulates CD11/CD18 adhesion activity, leading to increased
neutrophil adhesion to human umbilical vein endothelial
cells (14,15). N-domain sequences determine the specificity of
the CEACAMBG for interaction with itself or other CEACAMs,
including CEACAMS, CEACAMI1 and CEA (12,16), and
the bacterial proteins (12). CEACAMSG6 can form a homodi-
meric complex or a heterodimeric complex with CEACAMS
through homodimerization via its Ig-like V-type domain (17).
CEACAMS is highly expressed in developing neutrophil
progenitors, while CEACAMBS is highly expressed in type II
pneumocytes. The interaction between developing neutro-
phils and type II pneumocytes in Coronavirus disease 2019
involves crosstalk mediated by CEACAMS-CEACAMS6 (18).
CEACAMBG blockade by efficient inhibition of the CEACAMG6
and CEACAMI interaction reactivates the antitumor response
of T cells (19). In addition, N-glycosylated CEACAMG6

interacts with the EGFR in oral squamous cell carcinoma
(OSCC) cells and regulates intracellular signaling for tumor
invasion, migration and metastasis (20).

GPI-anchored proteins, known as ‘lipid rafts’ (21), are
abundant in ligands and effectors. The presence of CEACAM6
in the lipid raft region and its involvement in signaling align
with these findings, resulting in enhanced cell adhesion, cell
differentiation and anoikis (22). CEACAMS6 in pancreatic
adenocarcinoma cells interacts with avp3 integrins, which
in turn increases the adhesion of extracellular matrix compo-
nents, leading to cell invasion and metastasis (23). Besides,
integrin avp3, as a cell surface receptor, participates in
signaling transduction pathways in cancer cell proliferation
and metastasis (24).

3. Role of CEACAMG6 in cancer

A substantial body of evidence has now confirmed that
CEACAMS6 has a momentous role in the carcinogenesis
and clinical features of various types of cancer. It has been
reported that CEACAMEG is upregulated in a variety of cancers,
including non-small-cell lung carcinoma (NSCLC) (25),
pancreatic adenocarcinoma (26-28) and colorectal carcinoma
(CRC) (29). In this section, the effect of CEACAMSG6 in 12
types of cancer was summarized. Overall, high expression of
CEACAMG is positively correlated with the development of
these cancers. Furthermore, the specific mechanisms involved
were summarized in this section (Tables I-III; Fig. 1).

NSCLC. CEACAMG expression was detected by immunohis-
tochemical assessments to be higher in lung adenocarcinomas
(LUAD) than squamous tumors (25). Furthermore, exosome
testing of patients' serum revealed that LUAD had higher levels
of CEACAMS6 compared to squamous cell carcinoma (30).
This is probably the reason why the study of CEACAMG in
lung cancer is mainly in NSCLC. CEACAMG6 expression
is increased in NSCLC compared to normal tissues, and
CEACAMBG levels are associated with tumor progression and
metastasis (25).

CEACAMBG is closely associated with chemoresistance in
NSCLC. It is one of the most prominently upregulated genes in
the cisplatin-resistant A549/cisplatin cell line when compared
to the parental A549 cell line. Overexpression of CEACAMG6
leads to increased ICs, values of cisplatin, as well as enhanced
cell proliferation, invasion and migration (31). CEACAM6
induces upregulation of N-cadherin, vimentin, SOX2, POU
class 5 homeobox 1 and active ras homolog family member A,
while causing the downregulation of E-cadherin. Furthermore,
microRNA (miR)-146a and miR-26a have been identified
as potential regulators of CEACAMBS6, negatively affecting
its expression and enhancing the sensitivity of NSCLC to
cisplatin (31). Furthermore, CEACAMBS triggers the activation
of Src-focal adhesion kinase (FAK) signaling and hinders
anoikis through homologous interactions in LUAD (32).
Treatment with small interfering RNA targeting CEACAMO6
(siCEACAMO6) alone resulted in tumor growth inhibition
rates of up to 35.5%, which were significantly enhanced by
up to 47% when combined with cisplatin in murine xenograft
models (33). In a mouse model of a LUAD A549 cell-derived
xenograft, treatment with anti-CEACAMG6 antibody alone
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Table II. Upstream genes or molecules of carcinoembryonic antigen-related cell adhesion molecule 6 in cancers.

Author, year Cancer type Molecule/complex Direction of regulatory effect (Refs.)
Tsang, 2013 Breast cancers pSMAD3 + (80)
Du, 2020 Lung adenocarcinoma miR-146a, miR-26a - 31
Chen, 2013 Pancreatic cancer miR-29a/b/c - (43)
Han, 2008 Gastric cancer Smad3 + (73)
Yang, 2021 Colorectal cancer TGFp1,CD151 + (&2))
Chuang, 2020 Cervical cancer miR-128 - (120)
Chu, 2022 Gastric cancer miR-1256 - (74)
+, positive regulation; -, negative regulation; pPSMAD3, phosphorylated SMAD3; miR, microRNA.

Table III. Downstream molecules or pathways of carcinoembryonic antigen-related cell adhesion molecule 6 in cancers.
Author, year Cancer type Target or associated molecule/complex (Refs.)
Liu, 2022 Cholangiocarcinoma SRC/PI3K/AKT signaling pathway (89)
Tian, 2020 GBC MMP2, vimentin, BCL-2, BAX 92)
Chiang, 2018 Oral squamous cell carcinoma EGFR (20)
Yan, 2016 Pancreatic carcinoma Cyclin D1 and CDK4 (26)
Zang, 2015 Gastric cancer FAK signaling (72)
Zang, 2014 Gastric cancer C-SRC phosphorylation (65)
Zang, 2014 Gastric cancer PI3K/AKT signaling pathway (66)
Cameron, 2012 Head and neck cancer PI3K/AKT (C)
Kanderova, 2010 ALL Erk1/2, Akt, and p38 MAPK phosphorylation (100)
Duxbury, 2004 Pancreatic adenocarcinoma AKT phosphorylation (Ser-473) 41)
Duxbury, 2004 Pancreatic adenocarcinoma AKT, C-SRC 48)
Duxbury, 2004 Pancreatic adenocarcinoma C-SRC 46)
Duxbury, 2004 Pancreatic adenocarcinoma FAK phosphorylation (p125) (45)

FAK, focal adhesion kinase; CDK, cyclin-dependent kinase; ALL, acute lymphoblastic leukemia; GBC, gallbladder cancer; SRC, steroid

receptor coactivator.

resulted in a 40% inhibition of tumor growth. However, when
the antibody was combined with paclitaxel, the inhibition
of tumor growth was significantly enhanced, reaching up to
80% (34).

CEACAMG6 was demonstrated to promote NSCLC
progression and metastasis (25,35). CEACAMBS6 has a role
in leptomeningeal metastases of NSCLC and cell-free RNA
testing by lumbar puncture cerebrospinal fluid helps detect
brain metastases from patients with NSCLC (sensitivity,
88.24%; specificity, 100%) (36). By enzyme-linked immu-
nosorbent assay (ELISA) of serum, CAECAMG6 levels were
found to be higher in patients with LUAD than in healthy
controls, with the highest levels in patients with leptomeningeal
metastasis (37).

Pancreatic adenocarcinoma. The incidence of pancreatic
adenocarcinoma is increasing and ~50% of patients have
advanced disease at diagnosis; however, available cytotoxic

therapies for advanced disease are modestly effective (38).
CEACAMBS has been identified as a valuable biomarker for
pancreatic adenocarcinomas. Multiple studies have demon-
strated its presence in tumor specimens and serum of patients,
as opposed to healthy individuals; this discovery emphasizes
the potential usefulness of CEACAMBS in the diagnosis and
monitoring of pancreatic adenocarcinomas (26-28). Tumoral
CEACAMBG appears to be present early in the development of
pancreatic adenocarcinoma. CEACAMG6 expression was more
prevalent in pancreatic intraepithelial neoplasia lesions and
negative tumoral CEACAMBS6 expression was associated with
the absence of lymph node metastases, lower disease stage and
longer postoperative survival (39).

In the aspects of diagnosis and prognosis of pancreatic
adenocarcinoma, CEACAMS6 has manifested its potential
value. CEACAMG overexpression is universally a poor prog-
nostic marker in KRAS-mutant and wild-type pancreatic
adenocarcinoma and is overexpressed in primary and
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Figure 1. The CEACAMG signaling pathways. In the upstream of the CEACAMG6 signaling pathways, CD151 promotes SMAD3 phosphorylation via TGF-f1.
This leads to the phosphorylation of SMAD3, which in turn promotes the transcription of CEACAMS6. On the other hand, miR-146, miR-26a, miR-29a/b/c,
miR-128 and miR-1256 inhibit the transcription of CEACAMBS6. The transcriptional expression of CEACAMS is also regulated by promoter DNA methyla-
tion. In addition, MGATS facilitates N-glycosylation at Asn256 of the CEACAM®6 protein. Downstream of the CEACAMBS signaling pathways, CEACAM6
promotes tumor proliferation by increasing cyclin D1 and CDK4 protein levels. CEACAMSG6 activates the ERK1/2/MAPK or SRC/FAK/PI3K/AKT pathways
either directly or via EGFR to stimulate tumor proliferation, invasion, migration, resistance to anoikis and chemotherapy, as well as angiogenesis. FAK, focal
adhesion kinase; MGATS, a-1,6-mannosylglycoptotein 6-f-N-acetylglucosaminyltransferase; CDK, cyclin-dependent kinase; CEACAMBS, carcinoembryonic

antigen-related cell adhesion molecule 6.

metastatic basal and classical pancreatic adenocarcinoma
subtypes (28). Of note, serum concentrations of CEACAM6
demonstrated their potential value for assessing disease-free
survival (DFS) and overall survival (OS) of patients with
pancreatic adenocarcinoma after radical and adjuvant chemo-
therapy (27). This provides an important tool for making
individualized treatment plans and for monitoring the disease
process in patients with pancreatic adenocarcinoma.

CEACAMG is a potential therapeutic target in pancreatic
adenocarcinoma, and it affects the fibrotic reaction, immune
regulation and energy metabolism (28). Anti-CEACAMO6
antibody markedly suppressed pancreatic adenocarcinoma
tumor growth and enhanced tumor apoptosis in a nude mouse
xenograft model (40). Anoikis resistance was associated with
increased CEACAMG6 expression. CEACAMG6 knockdown
in pancreatic adenocarcinoma cell lines increased suscep-
tibility to caspase-mediated anoikis, and this effect was
abrogated by caspase inhibitor Z-Val-Ala-Asp-fluoromethyl
ketone (41). Recombinant plasmids knocking down
CEACAMG6 also led to a favorable anti-tumor phenotype
in SW1990 pancreatic adenocarcinoma cells (42). As the
positive regulator of epithelial-to-mesenchymal transition
(EMT), miR-29a/b/c-specific target CEACAMS6 regulates its
expression at the post-transcriptional level (43). In a mouse
xenograft model, ASPER-29 treatment significantly blocked
the metastasis of BxPC-3 pancreatic adenocarcinoma cells to
lung and liver tissues (44).

Mechanically, CEACAM6 promoted proliferation of
pancreatic adenocarcinoma by increased cyclin D1 and

cyclin-dependent kinase (CDK)4 protein levels, as confirmed
by knockdown of endogenous CEACAMS6 in BxPC-3 and
SW1990 cells and overexpression of CEACAM6 in MIA
PaCa-2 cells (26). CEACAMG6 signaling by cross-linking
with its antibody reduced the phosphorylation of caveolin-1,
leading to reduced recruitment of C-terminal Src kinase (Csk)
to the membrane. Csk negatively regulates phosphorylation
of c-Src 527 tyrosine residues, leading to reduced tyrosine
phosphorylation at a variety of downstream targets (45). The
role of c-Src in mediating increases in avp3 integrin binding
activity was observed. This increase in activity enhances
cellular adhesion to its classical ligand, vitronectin, as well
as to fibronectin. As a result, c-Src affects cell adhesion,
migration, proliferation and survival (23). Treatment with
anti-avp3 integrin almost completely abolished the increase
in vitronectin adhesion following CEACAMG6 crosslinking.
Both 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo(3.4-d)
pyrimidine, an inhibitor of c-Src family kinases, and c-Src
knockdown markedly attenuated the enhanced cellular adhe-
sion to vitronectin following CEACAMG6 crosslinking (23).
In addition, CEACAMS6 can modulate pancreatic adenocarci-
noma cellular invasiveness by c-Src-dependent modulation of
matrix metalloproteinase (MMP)-9 activity (46). CEACAM6
can antagonize the Src signaling pathway, downregulate cancer
cell cytoskeleton proteins and block adenovirus trafficking to
the nucleus of human pancreatic adenocarcinoma cells, which
decreases the antitumor effect of an oncolytic adenovirus (47).
CEACAMBG in pancreatic adenocarcinoma cell lines promoted
Akt phosphorylation (Ser-473) under anchorage-independent



INTERNATIONAL JOURNAL OF ONCOLOGY 64: 27, 2024 7

conditions (41), and increased Akt kinase activities (48). Akt
kinase is both necessary and sufficient to induce insulin-like
growth factor I receptor (IGF-IR) upregulation (48). IGF-IR
enhances the expression of MMP-2 by interacting with its
ligand IGF-I.

Poorer OS after radical treatment and adjuvant chemo-
therapy in patients with pancreatic adenocarcinoma was
significantly dependent on elevated CEACAMG6 blood
levels (17.0 vs. 12.6 months, P=0.017) (27). This suggests
that CEACAMBS is a promising new biomarker for patients
with pancreatic adenocarcinoma, with important prognostic
value and predictive properties of chemotherapy resistance.
Real-time monitoring of CEACAMS6 serum concentrations
may improve individualized treatment approaches for patients
with pancreatic adenocarcinoma (27).

CRC. CEACAMG expression is upregulated in proliferative
polyps and early adenomas, indicating early molecular events
in colorectal tumor progression (49). CEACAMG6 expres-
sion was increased in CRC and its level on the CRC cell
surface was inversely correlated with the degree of cellular
differentiation (29). After analyzing the tissue microar-
rays from a randomized controlled clinical trial of adjuvant
fluorouracil-based chemotherapy, which consisted of 243
paraffin-embedded biopsies, it was observed that CEACAMG6
expression in CRC served as an independent prognostic factor.
In addition, it was found that CEACAMS6 overexpression was
associated with poorer OS and DFS (50). Mechanistically,
it was discovered that CD151, through TGFp1, upregulates
CEACAMBG6 expression, thereby promoting CRC progres-
sion (51). TGF-p1 and TGF-f receptor 1 are highly expressed
in a variety of tumors, such as breast cancer, colon cancer,
gastric cancer and hepatocellular carcinoma (52). The expres-
sion of CEACAMBS is enhanced by CDI151 or TGFf1. This
presents a potential avenue for developing innovative targeted
therapies aimed at CD151 or TGFf1 to address tumors with
upregulated CEACAMG.

Immunohistochemical analysis and reverse transcrip-
tion-quantitative PCR (RT-qPCR) were used to analyze 78
colon cancer specimens, which included 40 cases of stage I-I1
and 38 cases of stage III-IV. In addition, 30 cases of colonic
adenoma and 12 healthy controls were included in the study (53).
The findings revealed a gradual increase in the expres-
sion of CEACAMG6 from normal colonic mucosa to colonic
adenoma to colonic cancer. Of note, forkhead box (FOX)P3
exhibited a similar expression pattern to CEACAMGO6 (53). In
a 1,2-dimethylhydantoin-induced colorectal cancer model
in rats, immunization of rats with recombinant attenuated
Salmonella containing the CEACAMS6 and 4-1BB ligand
genes reduced the number of FOXP3 cells and inhibited
colorectal carcinogenesis (54). FOXP3 as a transcription
factor is a crucial regulator in the development and function
of regulatory T cells (Treg). Numerous studies have indicated
that FOXP3 promotes carcinogenesis (55,56). The relationship
between CEACAMO6 and FOXP3 in the development of colon
cancer needs to be further explored.

For the early screening of patients with CRC and healthy
individuals, the potential markers CEACAMBS6, tetraspanin
8, galectin 4 and collagen type I a2 chain (the four genes
in combination are known as CELTiC) were examined. The

validation of these candidate markers was conducted through
RT-qPCR using blood samples from 67 patients and 67 healthy
controls. The sensitivity and specificity of the two groups were
determined to be 92 and 67%, respectively (57). The CELTiC
panel was subsequently analyzed using a nonparametric test
and multinomial logistic model in a population of fecal immu-
nochemical test (FIT)-positive subjects, who were compared
with patients with CRC and healthy individuals, confirming its
ability to identify patients with high-risk lesions, and appeared
able to discriminate false-positive FIT and low-risk patients
(non-advanced adenoma and polyps) (58). Furthermore,
CELTIC was able to distinguish between patients with CRC
and false-positive FIT participants (59). The biggest advantage
is that RT-qPCR is highly sensitive and specific and more
efficient and low-cost for disease screening (60).

Gastric cancer (GC). The expression of CEACAM®6 was found
to be higher in early GC compared to normal tissue, suggesting
that upregulation of CEACAM6 may be an early event in
the development of human GC (61). CEACAM6 mRNA and
protein levels were detected by RT-qPCR and immunohis-
tochemistry in 75 cases of primary gastric adenocarcinoma,
20 cases of paraneoplastic tissues and normal gastric mucosal
tissues. Analysis revealed the level of CEACAMG6 was not
associated with tumor size, histological differentiation or
tumor subtype (62). However, patients with high CEACAMG6
expression had a significantly shorter median survival time
after surgery than patients with low CEACAMG6 expression
(17 vs. 43 months; log-rank test P=0.046), suggesting that
CEACAMG is associated with poor clinical prognosis (63,64).
Furthermore, elevated CEACAMBS6 in GC is significantly asso-
ciated with lymph node metastasis, distant metastasis (63) and
advanced stage (62).

In terms of basic research, forced CEACAMG6 expression
in GC cells (MKN-45, SGC-7901) promoted migration and
invasion in vitro and athymic mice, whereas migration and
invasion of GC cells (MKN-28, SNU-16) were suppressed by
knockdown of CEACAMG6 (65). Regarding the mechanism,
CEACAMG induced EMT in GC, by causing increases in
the EMT markers N-cadherin, vimentin and Slug, while
E-cadherin expression was decreased (66). The Snail family
of zinc finger transcription factors, including Snail and
Slug, is involved in EMT during development. Slug was first
described as a transcription factor expressed in cells under-
going EMT during gastrulation and neural crest emergence
in chickens (67-71). Furthermore, E-cadherin expression
was negatively associated with the depth of tumor invasion,
lymph node metastasis and TNM stage in GC tissues (66).
CEACAMG also increased the levels of phosphorylated (p-)
AKT, which is involved in the progression of a variety of
human tumors. LY294002, a PI3K inhibitor, could reverse
CEACAMG6-induced EMT via mesenchymal-epithelial transi-
tion (66). CEACAMEG6 elevated MMP-9 activity in GC cells,
and anti-MMP-9 antibody could reverse the increasing inva-
sion and migration induced by CEACAMG6 (66). CEACAM®6
increased the levels of p-Src (65), p-PI3K, p-Akt and MMP9
proteins, and when Src signaling was inhibited, CEACAMG6
failed to restore the upregulation of these proteins, indicating
that p-Src is at a more upstream position in this signaling
pathway (64). CEACAMG also enhances tubule formation
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in human umbilical vein endothelial cells and promotes the
formation of angiogenic mimetics in GC cells. Mechanistically,
CEACAMBG induces the phosphorylation of FAK and paxillin
in GC cells (SCG-7901, MKN-45), and the tubule and angio-
genic mimetic formation induced by CEACAMBG is reduced by
the FAK inhibitor Y15 (72). This provides a potential target for
anti-vascular treatment of CEACAM6-overexpressing tumors.
In addition, SMAD3-mediated TGFp signaling increased the
activity of CEACAMG6 promoter and induced the expression
of CEACAMBS6 in GC cell lines (SNU638, SNU484) (73).
Circ_0008035 regulated the expression of CEACAM6 by
targeting miR-1256, thereby promoting the development
of GC (74). There are reports that tamoxifen could be a
therapeutic alternative for patients with GC with CEACAM6
overexpression (63).

CEACAMBG6 was also found to play a role in gastric infec-
tion with Helicobacter pylori and its carcinogenesis (61).
Infection with H. pylori is the strongest risk factor for the
development of GC, and cytotoxin-associated gene A (CagA)
protein is the most important bacterial oncoprotein (75).
Helicobacter pylori conserved outer membrane adhesin
(HopQ) may interact with CEACAMG6 of the human gastric
cells to induce the development of gastric ulcers and cancers
by transferring CagA oncoprotein or inducing activation
of the type-IV secretion system to initiate and maintain
inflammatory reactions (76). Infection of wild-type MKN28
cells by a CagA and live CagA wild-type H. pylori strain
in vitro resulted in upregulation of CEACAMG6 (61). Further
studies revealed that neutrophils interacted with H. pylori
in a HopQ-dependent manner, markedly promoting CagA
translocation and phosphorylation and prolonging survival
within neutrophils (77). It suggests that H. pylori infects the
stomach through CEACAMG6, which in turn promotes gastric
expression of CEACAMBS6 to exacerbate the infection, and
promotes inflammation through neutrophils, which explains
why elevated expression of CEACAMG is present in the early
stages of GC.

For early detection of GC, anti-CEACAMB®6 probe-assisted
fluorescence endoscopy may be a potential option for the
diagnosis of precancerous lesions (61,64). Furthermore,
CEACAMG6 may be a predictor for patients with advanced
GC, and higher expression of CEACAMS6 was found to be
associated with short postoperative survival time of patients
with GC (62). In addition, combination diagnosis of GC with
multiple molecules, including CEACAMSG, is increasingly
reported. CEACAM6, CEAMCAMS5, EpCAM and CA72-4
form a versatile set of markers for robust discrimination of GC
from adjacent normal tissue (78). CEACAMG6 combined with
ITGBI and CYRG6I in peripheral blood of patients with GC is
more sensitive than CEA, IGF-IR, cytokeratin 20 and S100A4
for early diagnosis of metastasis and recurrence (79).

Breast cancer. In a multicenter study, CEACAMG6 expression
was detected in 37.1% (312/840) of primary breast cancers (80).
The human EGFR2 (HER?2)-positive subtype showed the
highest CEACAMS6 expression (62.7%) and other subtypes
showed relatively low expression (21.8-37.5%) (80). This was
also confirmed in another study; HER2-positive subtype breast
cancers showed a high proportion of CEACAM6 (83%), and
this phenomenon was observed in 13 established breast cancer

cell lines (81). Of note, significantly worse OS was found in
high nodal stage HER2-positive cancers with CEACAMG6
positivity (80). HER2-overexpressing breast cancer cells
SK-BR-3 were treated with TGFp or EGF, resulting in SMAD3
phosphorylation and CEACAMS6 expression (80). A previous
study showed that the CD151/TGF-1/Smad3 axis has a role
in promoting breast cancer progression, leading to a more
advanced tumor stage, lymph node metastasis, distant metas-
tases and poorer prognosis (82). It suggested that CEACAMG6
is a target gene for SMAD3-mediated TGFf signaling (73).
HER?2 signaling synergistically regulates transcription of
SMAD target genes and signaling pathways with TGFf (83).
This suggests that CEACAMG6 expression in breast cancer is
associated with HER2 and TGFJ signaling.

It was also reported that CEACAMG6 was associated
with tamoxifen resistance in human breast cancer (1,84).
In the breast cancer cell lines MCF-7:5C and MCF-7:2A,
CEACAMG6 was overexpressed compared to wild-type MCF-7
cells, and acquired tamoxifen resistance lead to invasion
and migration by upregulation of p-Akt and p-c-Src (85).
CEACAMBS6 was found to have a significantly lower expres-
sion in trastuzumab-responsive than trastuzumab-resistant
breast cancers (86). Thus, CEACAM6 may contribute to
trastuzumab resistance. CEACAMG6 may function differently
in a context-dependent manner in breast cancers. CEACAM6
expression was higher in breast cancer with bone metastases
than other metastatic sites (87). After MCF-7 cells were
induced to become breast cancer stem cells (BCSCs), the
expression of CEACAMG6 was increased, while knockdown of
CEACAMBG6 in BCSCs reduced its proliferation (88). However,
CEACAMBG6 expression was significantly lower in basal-like
breast cancers, the other aggressive breast cancer subtype
with poor outcome (80). This indicates the heterogeneity of
CEACAMBG function in different cancer subtypes.

Cholangiocarcinoma. CEACAMG6 was overexpressed in
highly differentiated and less differentiated cholangiocarci-
noma tissues compared with para-cancerous tissues, and the
expression level of CEACAM6 was negatively associated
with the degree of differentiation of cholangiocarcinoma (89).
Patients with high CEACAM®6 expression showed a signifi-
cantly poorer DFS rate than those with low CEACAM6
expression (90). Silencing CEACAMBG6 inhibited cell viability,
invasion and migration but promoted cell apoptosis in the
human cholangiocarcinoma cell line RBE. Mechanistically,
CEACAMG6 knockdown decreased the expression of Bcl-2,
N-cadherin, MMP-2 and MMP-9, Twistl, vimentin, VEGFA
and intercellular adhesion molecule-1 (ICAM-1), but increased
the expression of BAX and cleaved caspase-3, caspase-8 and
caspase-9 and E-cadherin. Besides, CEACAMG6 knockdown
reduced the expression of the SRC/PI3K/AKT signaling
pathway (89). Besides, overexpression of CEACAM®6 caused
resistance to gemcitabine in cholangiocarcinoma. Among
cholangiocarcinoma cell lines, TFK-1 with high CEACAM6
expression was more resistant to gemcitabine than HuCC-T1
and MEC with low CEACAMBG6 expression. This was confirmed
by CEACAMG overexpression in HuCC-T1 and knockdown
reduction in TFK-1 (90).

CEACAMG6 was overexpressed in cholangiocarci-
noma (89), and high CEACAMBG levels showed a significantly
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poorer DFS rate (90). A study confirmed the diagnostic value
of the CEACAMG6 concentration in bile for cholangiocarci-
noma (91). Bile from 83 patients (42 with benign disease, 41
with cholangiocarcinoma) was collected at the time of index
operation. The concentration of CEACAM6 was quantified
by sandwich ELISA and correlated to the pathological diag-
nosis. Patients in the benign group had lower median biliary
CEACAMBG levels than patients in the malignant group (7.5 vs.
40 ng/ml; P<0.001). Receiver operating characteristic curve
analysis determined CEACAMG to be a positive predictor
of cholangiocarcinoma with a CEACAMBS6 level >14 ng/ml
associated with 87.5% sensitivity and 69.1% specificity.

Gallbladder cancer (GBC). In human GBC, CEACAM®6 gene
expression was significantly greater in GBC tissues than in
peritumoral tissues and its positive expression was associated
with poor prognosis. CEACAMG6 knockdown in GBC-SD and
SGC-996 cell lines inhibited GBC cell proliferation, migration
and invasion but promoted cell apoptosis. Mechanistically,
CEACAMG6 knockdown inhibited migration and invasion by
decreasing MMP2 and vimentin, promoted cell apoptosis
by increasing BAX and decreasing BCL-2, and inhibited
proliferation by increasing the cell population in the GO/G1
phase and reducing it in G2/M and S phases (92).

Ovarian neoplasms. CEACAM6 overexpression was demon-
strated in 13/16 (81%) borderline, low-grade and high-grade
invasive mucinous ovarian neoplasms (MON), compared to
5/50 (10%) serous and 1/5 (20%) benign mucinous samples (93).
Another study found that mucinous ovarian adenocarcinomas
had almost 3-fold more CEACAMSG6 than serous ovarian
adenocarcinomas by analysis of immunohistochemical results
from tissue microarrays (25). This result is consistent with
the cell lines. CEACAMS6 was expressed in 2 of 3 mucinous
cancer cell lines and was not expressed in any of the 2 normal
human ovarian surface epithelium, 7 serous cancer and 2 clear
cell cancer cell lines (93). Of note, there was no difference
in CEACAMG expression amongst various grades of MON,
including borderline, low-grade and high-grade MON, at the
mRNA or protein level (93). This raises the possibility that
aberrant CEACAMO6 expression may occur early in mucinous
ovarian cancer tumorigenesis. In addition, high expression
of CEACAMO6 may lead to carboplatin resistance in ovarian
cancer (94). Interestingly, CEACAMBS6 expression was noted in
mucinous secretions by immunohistochemistry, and this raises
the possibility that CEACAMG6 may be useful as a serum
marker for MON (93).

In patient-derived xenograft models, the recurrence
and acquisition of drug resistance in carboplatin-sensitive
high-grade ovarian cancer was attended by elevated expres-
sion of CEACAMG, crystallin aB and SOX2 genes at the
protein and RNA levels (94). This suggests that CEACAM®6
has a role in drug resistance and recurrence in high-grade
ovarian cancer.

Head and neck squamous cell carcinoma (HNSCC).
Bioinformatics analysis revealed that CEACAMO6 gene
expression was downregulated in most squamous carcinoma
tissues, such as laryngeal, hypopharyngeal and oropharyn-
geal carcinomas, compared to adjacent normal tissues (95).

With consistent results, laryngeal squamous cell carcinoma
(LSCC) showed downregulated CEACAMG6 expression (96).
Expression microarrays of 16 LSCC samples (11 cell lines and
5 primary tumors) indicated downregulation of CEACAM6
compared to non-tumor controls. It was further confirmed
by RT-qPCR of 25 LSCC cell lines that the CEACAMG6 gene
was downregulated in recurrent, advanced and high-grade
tumors compared to controls. Mechanistically, bisulfite
pyrophosphate sequencing identified 9/25 (36%) LSCC
cell lines with DNA hypermethylation in the CEACAM6
promoter region (mean DNA methylation, >78%). In addition,
5-aza-2-deoxycytidine-induced DNA methylation inhibition
restored CEACAMG6 expression at the mRNA level in both
LSCC cell lines. However, another study showed the opposite
result: CEACAMG6 expression was significantly increased
in highly tumorigenic HNSCC cell lines relative to less
tumorigenic HNSCC cell lines. Mechanistically, CEACAM®6
enhances tumor-initiating activity and tumor growth by acti-
vating AKT and inhibiting caspase-3-mediated cell death (97).
In addition, glycosylated CEACAMG6 was found to be a tumor
marker associated with recurrence in patients with early-stage
OSCC (20). Mechanistically, N-glycosylation at Asn256 of
CEACAMG6 mediated by a-1,6-mannosylglycoptotein 6-f3-
N-acetylglucosaminyltransferse was found to promote OSCC
cell invasion and migration, cytoskeletal rearrangement and
metastasis. This effect was attributed to the interaction between
glycosylated CEACAMG6 and EGFR, which enhanced EGFR
activation, clustering and intracellular signaling cascades. In
addition, treatment with anti-CEACAMG6 antibody inhibited
the oncological effects and EGF-induced signaling in cells
overexpressing CEACAM6.

Osteosarcoma. CEACAMG6 expression was found to be
significantly upregulated in metastatic osteosarcoma tissues
compared to nonmetastatic tissues. Furthermore, the upregula-
tion of CEACAMG6 was strongly associated with the presence
of lung metastasis. Survival analysis revealed that patients with
osteosarcoma with high CEACAMG6 expression had signifi-
cantly shorter OS and lung metastasis-free survival compared
to those with low CEACAMG6 expression. In addition, knock-
down of CEACAMG6 was observed to inhibit osteosarcoma
cell migration, invasion and EMT (98).

Acute leukemias. Acute leukemias showed overexpression
of CEACAMG6 compared with normal granulocytes (99).
In acute lymphoblastic leukemia cells, cross-linking with
anti-CEACAMG6 antibody can imitate CEACAMBS6 signaling.
Mechanistically, CEACAMG6 signaling promotes ERK1/2, Akt
and P38 MAPK phosphorylation and integrin upregulation, as
well as enhanced integrin ligand binding, including vascular
cell adhesion molecule-1 and ICAM-1 (100).

CEACAMBG is a potential diagnostic marker for plasma
cell diseases (101). CEACAMG levels in peripheral blood
are higher in plasma cell disorders than in healthy controls.
A marked difference of CEACAMBS in peripheral blood was
observed between healthy controls (median, 15.2 pg/ml;
interquartile range, 12.1-17.1 pg/ml), monoclonal gammopathy
of unknown significance patients (median, 19.0; interquar-
tile range, 16.4-22.5 pg/ml), newly diagnosed patients with
multiple myeloma (median, 18.0; interquartile range,



10 WU et al: EMERGING ROLE OF CEACAM6 IN HUMAN DISEASES

13.4-21.2 pg/ml) and patients with relapsed/refractory multiple
myeloma (median, 18.9; interquartile range, 16.5-24.1 pg/ml)
(P<0.001).

Urinary tract cancers. CEACAMG6 expression was found to be
upregulated in clear cell renal cell carcinoma (ccRCC) through
RT-qPCR, immunohistochemical staining and western blot
analysis of ccRCC tumor tissues and cell lines. Furthermore,
patients with relatively low CEACAMBS levels exhibited longer
OS. Overexpression of CEACAMG6 was found to enhance
proliferation and migration in ccRCC cells. Conversely, deple-
tion of CEACAMG6 through short hairpin RNA was observed
to modulate these changes. Further investigation revealed that
the activation of the ERK/AKT signaling pathway has a crucial
role in these processes. In addition, blocking the PI3K/AKT
pathway was able to negate the effects of CEACAMG6 overex-
pression (102).

Furthermore, urine examination for urothelial carcinoma of
the bladder (UCB) revealed elevated expression of CEACAMI,
CEACAMS5 and CEACAMG6, which may be used as a potential
biomarker for the screening of UCB of the bladder (103).

4. Molecular therapy of targeting CEACAM6

The molecular heterogeneity of tumor cells has likely contrib-
uted to the lack of effective targeted therapies (104). Optimal
proteins to target using theragnostic agents must exhibit high
membrane expression on cancerous tissue with low expression
on healthy tissue to afford improved disease outcomes with
minimal off-target effects and toxicities (105). CEACAMGO6 has
emerged as a highly specific marker for invasive cancers (106)
and shows great potential as a target for effective cancer
therapy (107). High expression of CEACAMG is associated
with unfavorable OS and DFS in different malignancies (108).
Targeting CEACAMG6 with antibodies has been reported in
numerous tumors and has a significant role in tumor treatment,
including directly blocking the intracellular signaling it causes,
attenuating drug resistance and mediating the accumulation of
drugs in tumor cells.

CEACAMBO has been identified as a target candidate for
chimeric antigen receptor T (CAR-T) cell therapy for immu-
notherapy of pancreatic adenocarcinoma (109). Binding and
cross-linking of CEACAMSG to cytotoxic T cells inhibits
its activation, resulting in T-cell nonresponse. Blockade of
CEACAMBS6 on the surface of myeloma cells by specific
monoclonal antibodies or knockdown of the CEACAMG6 gene
restores T-cell responsiveness to malignant plasma cells (110).
In vitro experiments have shown that the humanized
CEACAMG blocking antibody BAY 1834942 is equally or more
effective than blocking programmed cell death 1 (PD-1) ligand
1 in activating T-cell anti-tumor responses, and that this effect
is enhanced when combined with anti-PD-1 antibodies (19).
CEACAMBG ligand vaccine demonstrated good immune anti-
tumor effects in a rat colorectal cancer model via mechanisms
including promoting antitumor immune response, increasing
the number of CD45RO+ memory T cells, decreasing the
number of FOXP3+ cells and promoting type 1 T-helper cell
polarization (111). CEACAMS6 as a subtype-specific tumor
surface antigen demonstrates the potential for CAR-T cell and
antibody-drug coupled therapy in breast cancer (112).

Humanized monoclonal antibody NEO-201, with a
potential target of CEACAMSG6, exhibits specificity for a
variety of cancers, including colon, pancreatic and mucinous
ovarian cancer tissues, as well as cell lines, and showed no
cross-reactivity with surrounding healthy tissues (113). It
has also shown good anti-tumor effects in in vitro cellular
assays and in vivo animal models. Functional analysis
revealed that NEO-201 mediates antibody-dependent
cellular cytotoxicity killing against human ovarian and
CRC cell lines in vitro. Anti-CEACAMS6 single domain
antibody (sdAb) showed good anti-tumor effects in pancre-
atic adenocarcinoma cell models, including reduction of
cell proliferation, invasion, and metastasis, and inhibition
of angiogenesis (114). Antibodies designed against human
CEACAMBSG in a mouse xenograft model of pancreatic
adenocarcinoma inhibited tumor growth (40,115) and
enhanced tumor cell apoptosis (40), and were more effec-
tive when used in combination with gemcitabine (115).
Optimization of antibodies allows for better results in
in vivo experiments. Heavy chain antibody 2A3-mFc is
superior to the single domain antibody and the full-length
antibody regarding tumor detection and pharmacoki-
netics (116). Multivalent antibodies show higher affinity
and therapeutic efficacy. The developed bivalent sdAb and
quadrivalent sdAb anti-CEACAMG6 antibodies inhibited
tumor invasion and migration in the NSCLC cell line A549.
In addition, these antibodies also inhibited tumor growth in
A549-derived xenograft models (104).

Antibodies coupled to special carriers help enhance
their function and improve the therapeutic effect.
CEACAMG6-targeting albumin-based nanoparticles allowed
the delivery of drugs to metastatic anoikis-resistant tumor
cells in vitro and in vivo. Based on the expression of
CEACAMBS in a variety of tumors, this may be used to
target various types of metastatic tumor cells (117). It was
demonstrated that polyethylene glycol-modified iron oxide
nanoparticles triple single chain antibodies (scAbs) (scAb
mucin 4, sScAbCEACAMBS6 and sc variable fragments CD44v6)
had an excellent performance in the diagnosis and treatment
of pancreatic adenocarcinoma (118). It significantly shortened
the MRI T2-weighted signal intensity both in vitro and in vivo
and also showed a favorable anti-pancreatic adenocarcinoma
effect. In addition, the delivery of siCEACAMG6 to LUAD
using the pH low insertion peptide has therapeutic potential as
a unique cancer treatment approach (33). At least it has shown
good effects in vitro cellular models and in vivo nude mice
xenograft tumor models.

Anoikis is the apoptotic response induced in normal
cells by inadequate or inappropriate adhesion to substrate.
CEACAMGO is highly expressed in metastatic anoikis-resis-
tant tumor cells (119). Treatment with anti-CEACAMG6
monoclonal antibody clone 8F5 to A549 cells decreased
cellular CEACAMG6 expression and reversed anoikis resis-
tance (34). Furthermore, the utilization of human serum
albumin nanomedicine targeted CEACAMS6 by delivering
an encapsulated chemotherapeutic drug, adriamycin, which
effectively targeted circulating metastatic anoikis-resistant
tumor cells (117).

CEACAMG6, as a molecule specifically expressed in a
variety of epithelial tumors, has a role in tumor development.
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Targeting CEACAMG has also demonstrated favorable thera-
peutic effects in cellular and animal models. Studies related to
cellular and animal models of CEACAMG6 molecular targeting
therapy are listed in Table IV, including tumor type, treatment
method and treatment effect. It is expected that in the future,
clinical research and applications of targeted CEACAMO6 will
provide better results.

5. Conclusions

Accumulating evidence has indicated the important roles of
CEACAMGO in the pathogenesis, clinical manifestations and
management of cancer, including proliferation, invasion,
metastasis, angiogenesis, anoikis resistance, drug resistance,
diagnosis and prognosis. Upstream of CEACAMS6 signaling,
CD151 promotes SMAD3 phosphorylation via TGFp1. This
leads to the phosphorylation of SMAD3, which in turn
promotes the transcription of CEACAMSG. In order to inves-
tigate the functions of CD151 and the TGFB/SMAD?3 axis in
different types of tumors, further experiments using various
cellular and animal tumor models are needed. On the other
hand, miR-146, miR-26a, miR-29a/b/c, miR-128 and miR-1256
inhibit the transcription of CEACAMSG6. The transcriptional
expression of CEACAMBG is also regulated by promoter DNA
methylation. In addition, a-1,6-mannosylglycoptotein 6-3-N
-acetylglucosaminyltransferse facilitates N-glycosylation at
Asn256 of the CEACAMG6 protein. Downstream of CEACAM6
signaling, CEACAMG6 promotes tumor proliferation by
increasing cyclin D1 and CDK4 protein levels. CEACAMO6
activates the ERK1/2/MAPK or SRC/FAK/PI3K/AKT
pathways either directly or via EGFR to stimulate tumor
proliferation, invasion, migration, resistance to anoikis and
chemotherapy, as well as angiogenesis. CEACAMS6 has
shown favorable results in basic tumor research in diagnosis
and targeted therapy, with potential translational application
value. Clinical experiments based on large sample size and
further in-depth mechanistic research are the future research
directions of CEACAM6. CEACAMG6 may provide new ideas
for the treatment of tumors.
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