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Chromosomal organization and fluorescence in situ
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Abstract. Sirtuin 6 (SIRT6) is a member of the sirtuin
deacetylases (sirtuins), which are derivatives of the yeast
Silent information regulator 2 (Sir2) protein. SIR2 and its
mammalian derivatives play a central role in epigenetic gene
silencing, recombination, metabolism, cell differentiation and
in the regulation of aging. In contrast to most sirtuins, SIRT6
lacks NAD*-dependent protein deacetylase activity. We have
isolated and characterized the human Sirt6 genomic sequence,
which spans a region of 8,427 bp and which has one single
genomic locus. Determination of the exon-intron splice
junctions found the full-length SIRT6 protein to consist of
8 exons ranging in size from 60 bp (exon 4) to 838 bp (exon
8). The human Sirt6 open reading frame encodes a 355-aa
protein with a predictive molecular weight of 39.1 kDa and
an isoelectric point of 9.12. Characterization of the 5' flanking
genomic region, which precedes the Sirt6 open reading
frame, revealed a TATA- and CCAAT-box less promoter
with an approximately 300-bp long CpG island. A number of
AML-1 and GATA-x transcription factor binding sites were
found which remain to be further evaluated experimentally.
Fluorescence in situ hybridization analysis localized the
human Sirt6 gene to chromosome 19p13.3; a region which is
frequently affected by chromosomal alterations in acute
leukemia. Human SIRT6 appears to be most predominantly
expressed in bone cells and in the ovaries while, in the bone
marrow, it is practically absent. The functional characteristics
of SIRT6 are essentially unknown at present and remain to
be elucidated.
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Introduction

Based on structural and functional similarities, mammalian
histone deacetylases are grouped into four categories, of
which three contain non-sirtuin HDACs comprising the yeast
histone deacetylases, RPD3 (class | HDACs), HDAL (class 11
HDACG:S) and the more recently described HDAC1 1-related
enzymes (class IV HDACs), while one category consists of
sirtuin histone deacetylases (class III HDACs), which are
homologs to the yeast Sir2 protein. SIRT1 is the mammalian
sirtuin that is most closely related to S. cerevisiae SIR2. By
contrast, mammalian SIRT6 is strongly related to SIRT7 (1)
but only distantly homologous to human SIRT1 and yeast
SIR2. The currently known seven human sirtuins have been
further subgrouped into four distinct phylogenetic classes:
SIRTI, SIRT2, and SIRT3 (subclass 1); SIRT4 (subclass 2);
SIRTS (subclass 3); and, finally, SIRT6 and SIRT7 (subclass
4, Fig. 1 and Table I) (1,2). Derivatives of the yeast SIR2
histone deacetylase share a common catalytic domain which
is highly conserved in organisms ranging from bacteria to
humans and which is composed of two distinct motifs that
bind NAD* and the acetyl-lysine substrate, respectively (3,4).
The yeast silent information regulator 2 protein (SIR2) is a
NAD*dependent histone deacetylase, which hydrolyzes one
molecule of NAD* for every lysine residue that is deacetylated
(5). The yeast Sir2 protein, as well as its mammalian deriv-
atives, has been shown to directly modify chromatin and to
silence transcription (6-10), to modulate the meiotic checkpoint
(11) and, as a probable anti-aging effect, to increase genomic
stability and suppress rDNA recombination (8,12,13). While
yeast SIR2 exclusively targets histone proteins, mammalian
SIRT1 has a large and growing list of targets, such as p53
and forkhead transcription factors, which are mammalian
homologs of the Daf-16 protein, a key regulator within the
insulin signaling pathway (8,14).

SIRT6 is a broadly expressed protein, which is pre-
dominantly found in the cell nucleus. In a tissue distribution
analysis in the mouse embryo, SIRT6 reached peak levels at
day E11, which further persisted into adulthood in muscle,
brain and heart cells (15). The yeast silent information
regulator 2 protein (SIR2); its mammalian orthologs, SIRTI,
SIRT2, SIRT3, and SIRTS; and the bacterial protein, CobB;
catalyze the tightly coupled cleavage of NAD* and protein
deacetylation, producing nicotinamide and 2-O-acetyl-ADP-
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Figure 1. The position of human SIRT6 among the human orthologs for
yeast RPD3, HDAI, SIR2 and HDACTI1 related protein families of histone
deacetylases (HDAC classes I-IV) and within the sirtuin-subclasses
(subclasses 1-4) is shown (accession numbers of the sequences used in this
tree: human HDAC1 (GenPept Q13547), human HDAC2 (GenPept
Q92769), human HDAC3 (GenPept O15379), human HDAC8 (GenPept
AAF73428), human HDAC4 (GenPept AAD29046), human HDACS
(GenPept AAD29047), human HDAC6 (GenPept AAD29048), human
HDAC7 (GenPept AAF04254), human HDAC9 (GenPept AAK66821),
human HDACI10 (GenPept AAL30513), human HDAC11 (GenPept
NP_079103), human SIRT1 (GenPept AAD40849), human SIRT2 (GenPept
NP_036369), human SIRT3 (GenPept AAD40851), human SIRT4 (GenPept
AAD40852), human SIRTS (GenPept AAD40853), human SIRT6 (GenPept
NP_057623) and human SIRT7 (GenPept AAF43431) (4).
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ribose reaction products (16). The deacetylase activity of sirtuin
proteins is tightly coupled with their phosphoribosyltransferase
activity and requires the presence of highly specific conserved
amino-acid residues within the catalytic core of the protein,
which are not contained in mammalian SIRT4, SIRT6, or
SIRT7 and which are, therefore, lacking enzymatic deacetylase
activity (2,8,15,17-19).

Calorie restriction is known to induce a metabolic switch
that increases the NAD/NADH ratio and/or decreases levels
of nicotinamide, which is a yeast SIR2 inhibitor, and as a result
activates SIR2 and increases rDNA stability (8,20). Sirtuins,
therefore, create a direct link between cellular energy status
and longevity (8,21). Mammalian SIRT1 binds, deacetylates
and reduces the activity of several transcription factors in vivo,
including MyoD, p53, and FOXO, thereby affecting cell
differentiation and survival under stress (14,22,23). The effect
of SIRT1 on p53 may be inhibited by Nicotinamide (vitamin
B3) (23-25). Calorie restriction in mammalian cells activates
FOXO3A and increases FOXO3A-mediated expression of
SIRT1, which depends on the presence of two p53 binding
sites in the SIRT1 promoter, and a nutrient-sensitive physical
interaction that was observed between FOXO3A and p53
(14,26,27).

A cell that is low in energy will consume most of its
NADH to generate ATP. The consequential high levels of
nicotinamide adenine dinucleotide (NAD*) provide the
indispensable cosubstrate for SIR2, which then activates
acetyl-CoA synthetase (ACS) and subsequently results in the
generation of more acetyl CoA, thus shunting more carbon
into the NADH- and energy-generating TCA cycle (28). In
addition to the generation of acetyl CoA, active Sir2 is also
known to extend lifespan. More acetyl CoA for the citric acid
cycle means more respiration, which has been associated with
yeast lifespan extension when caloric intake is restricted.
Accordingly, when mammals are short of food they also alter
their metabolism such that both aging and reproduction are
postponed until better times (28).

In contrast to SIRT1, only minimal information is currently
available on human SIRT6, which is a distantly related ortholog
of yeast SIR2 (1,29), and which has been predicted to be
predominantly a nuclear protein (78.3% nuclear, 13.0% cyto-

Table I. Sequence identity and similarity among human class III sirtuin proteins.?

Human Human Human Human Human Human Human Yeast

SIRT1 SIRT2 SIRT3 SIRT4 SIRTS SIRT6 SIRT7 SIR2
Human SIRTI1 42 40 30 28 22 23 40
Human SIRT2 65 50 26 27 27 25 31
Human SIRT3 63 66 28 31 28 28 35
Human SIRT4 47 43 43 27 28 28 25
Human SIRT5 43 44 43 46 21 24 26
Human SIRT6 39 44 40 43 36 42 23
Human SIRT7 39 42 40 45 37 56 21
Yeast SIR2 56 47 49 44 41 38 38

“The indicated numbers represent the percentage of sequence identity and similarity from pairwise sequence comparisons.
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Figure 2. The complete sequence of Sirt6 cDNA together with the predicted amino-acid sequence is shown with the location of each intron with respect to the
cDNA sequence. The 1,638-bp human Sirt6 mRNA has an open reading frame of 1,065 bp that encodes the 355-aa SIRT6 protein. The untranslated 3'
flanking region of exon 8 was shown to contain the eukaryotic polyadenylation consensus signal AATAAA (38), 484 bp downstream of the termination of
translation signal TGA. Two kb of the 5' upstream promoter region are indicated 5' upstream of the translational start codon. Putative transcription factor
binding sites are entered and the corresponding DNA sequence is underlined. The CpG island is also underlined and the corresponding DNA sequence is
indicated in lower-case bold italics. The translational start (ATG) and stop codons (TGA) are underlined, the polyadenylation signal (AATAAA) is boxed.

skeletal, 4.3% Golgi, 4.3% mitochondrial) (30). Human SIRT6  absent. The further functional characterization of mammalian
appears to be most predominantly expressed in bone cells  SIRT6 may help to further elucidate its potential role in the
and in the ovaries, while in the bone marrow it is practically = mediation of stress resistance, anti-apoptosis, anti-aging and



450

MAHLKNECHT et al: CHARACTERIZATION OF HUMAN Sirt6

human Sirté gene (total 8,427 bp)

s 5000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 8,427
STS st5G48370
introns SINES (Alu) exons s
(i ]
1 2 ; 3 B 4 50 6 7o 8
— e e = L Saiame =
N
SIR2 family domain
0 50 100 160 200 250 300 355

human SIRT6 protein (total 355 aa)

Figure 3. Genomic organization of the human Sir76 gene. The genomic organization of the 8,427-bp long Sirt6 gene, which includes the relative position of
exons and introns, is shown. Repetitive sequences, known as short interspersed nuclear elements (SINEs) are indicated. The position of internal STS-marker,
stSG48370, is indicated. The sirtuin catalytic domain overlaps the SIRT6 protein region that is encoded by exons 2 through 7.

as a modulator of endocrine changes. In the study presented
herein, we report the chromosomal localization and genomic
organization of the human Sirt6 gene.

Materials and methods

Identification of the human Sirt6 cDNA. A homology search of
the EST database at NCBI (National Center for Biotechnology
Information) with the human Sirt6 ¢cDNA that has been
published earlier (1) yielded 7 positive cDNA clones of which
one was obtained from the Reference Center of the German
Human Genome Project (RZPD, Berlin, Germany). The
authenticity of their inserts was confirmed by DNA cycle
sequencing (Fig. 2).

Identification of BAC genomic clone, RZPDB737G031026D6.
The human Sirt6 genomic clone was obtained from an arrayed
BAC genomic library (Human Genomic Set - RZPD 1.0)
after in silico screening with Sirt6 cDNA (GenBank clone
NM_016539), which was shown to contain full-length human
Sirt6 cDNA. BAC clone, RZPDB737G031026D6, was
identified to contain inserts with an average size of approx-
imately 120 kb in the vector, pBACe3.6, which included the
human Sirt6 genomic sequence. BAC genomic DNA was
prepared according to published protocols (31) and the Sirt6
insert was confirmed by cycle sequencing (32).

Instrumental methods. Dye terminator cycle sequencing was
performed using the ABI PRISM™ BigDye Terminator
Cycle Sequencing Ready Reaction Kit with AmpliTag™ DNA
polymerase (Perkin-Elmer, Branchburg, NJ) and analyzed
using an ABI PRISM 310 Genetic Analyzer which utilizes
the four-color sequencing chemistry.

PCR methods. The human Sirt6 sequence was partially
sequenced by primer walking on both strands using a direct
sequencing strategy (32). Sequencing reactions were performed
using 0.6 yg cDNA and 20-30mer oligonucleotide primers

(Thermo Electron, Dreieich, Germany). Sequencing reactions
were set up in a volume of 20 ul containing 10 pmol of the
sequencing primer, 4 u1 BigDye Terminator Cycle Sequencing
Ready Reaction Mix (Perkin-Elmer, Norwalk, CT), and DNA
as indicated, and ddH,O was added to a final volume of 20 ul.
The thermal cycling profile for the sequencing of the cDNA-
clones was as follows: denaturation at 95°C for 30 sec,
annealing at 50°C for 15 sec, extension at 60°C for 4 min
(25 cycles), and storage at 4°C.

Sirt6 chromosomal localization by fluorescence in situ
hybridization (FISH). Standard chromosome preparations
were used from a human lymphoblastoid cell line. In order to
remove excess cytoplasm, slides were treated with pepsin
(0.5 mg/ml in 0.01 M HCI, pH 2.0) at 37°C for 40 min. Slides
were then washed for 2x10 min in 1X PBS and 1x10 min in
1X PBS/50 mM MgCl, at room temperature. BAC DNA
was labeled by using a standard nick translation procedure.
Digoxigenin (Roche Diagnostics) was used as labeled dUTP
at the concentration of 40 yM. Probe length was analyzed on
a 1% agarose gel. The probe showed an optimal average
length of ~300 bp after nick translation. Approximately 50 ng
DNA were pooled with 2 ug cot-1 in 10 ul hybridization
buffer (50% formamide, 2X SSC, 10% dextran sulfate). The
DNA was applied to chromosomes fixed on a slide, mounted
with a cover slip and sealed with rubber cement. Probe
DNA and chromosomes were denatured at 72°C for 3 min.
Hybridization was overnight at 37°C in a wet chamber. After
hybridization, the cover slip was carefully removed and the
slide was washed in 2X SSC for 8 min. The slide was then
incubated at 72°C in 0.4X SSC/0.1% Tween for 1 min, washed
shortly in 2X SSC at room temperature, and stained in DAPI
(4',6-diamidino-2-phenylindole) for 10 min. For microscopy,
the slide was mounted in antifade solution (Vectashield).
In situ hybridization signals were analyzed on a Zeiss
Axioplan II microscope. Each image plain (blue and orange)
was recorded separately with a b/w CCD camera. Chromo-
somes and FISH signals were then displayed in false colors
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Figure 4. Chromosomal mapping of the human Sirt6 gene. Upper panel (A), chromosome 19 idiogram according to the International System for Cytogenetic
Nomenclature (ISCN 1995). The chromosomal position of BAC clone RZPDB737G031026D6 in close proximity to the PRKMK2 gene (located
telomerically) and the THOP1 gene (located centromerically) is shown as well as the chromosomal orientation of Sirt6 gene (red arrow). (B) From left to
right, next to the chromosome 19 idiogram, pictures of a DAPI-stained chromosome 19, together with the same chromosome carrying the BAC hybridization
signal, are illustrated. (C) Fluorescence in situ hybridization of BAC clone RZPDB737G031026D6 to human chromosome 19p13.3.

and images merged on the computer. Camera control, image
capture and merging were performed using SmartCapture X
software (Digital Scientific, Cambridge, UK) (Fig. 4).

Sequence analysis and computer database searches. DNA
sequence analysis was performed using the HUSAR (Heidel-
berg Unix Sequence Analysis Resources) server hosted by
the Biocomputing Service Group at the German Cancer
Research Center (DKFZ, Heidelberg) and the UniGene and
LocusLink programs at the National Center for Biotechnology
Information (NCBI). Sequence comparisons were performed
using the BLAST algorithm of the GenBank and EMBL
databases (33). Protein similarity scores were calculated
from fast alignments generated by the method of Wilbur and
Lipman using the CLUSTAL W Multiple Alignment Program
Version 1.7 (Figs. 1 and 5; Tables I and III) (34). Protein
motifs were identified online at the EXPASy (Expert Protein
Analysis System) proteomics server of the Swiss Institute
of Bioinformatics (SIB) with the program, PROSITE, and
double-checked using the MotifFinder program hosted by
the GenomeNet server at the Bioinformatics Center at the
Institute for Chemical Research from the Kyoto University
(Japan). Potential transcription factor binding sites were
identified using the TRANSFAC program, which is part of
the GenomeNet Computation Service (see above), but remain

to be confirmed experimentally. Sequence similarities were
calculated using GAP software, which considers all possible
alignments and gap positions between two sequences and
creates a global alignment that maximizes the number of
matched residues and minimizes the number and size of gaps
on the HUSAR server (35). Repetitive and CpG elements
were identified on the RepeatMasker Server and with the
CPG software hosted by the European Bioinformatics Institute
(EMBL outstation) (Figs. 2 and 3).

Phylogenetic analysis. Phylogenetic trees were constructed
from known human class I through class IV histone deacetylase
sequences which were obtained from protein sequence
similarity searches with the yeast proteins, RPD3, HDA1 and
SIR2, using the BLAST 2.0 program at NCBI database (Non-
redundant GenBank CDS: translations+PDB+SwissProt
+SPupdate+PIR). Progressive multiple sequence alignments
were performed using the CLUSTAL W Multiple Alignment
Program Version 1.7 (Fig. 1) (4,36). Trees were then calculated
and drawn using PileUp software, which computes a multiple
sequence alignment using a simplification of the progressive
alignment method of Feng and Doolittle (37) and which can
plot a dendrogram like the one below, that shows the clustering
relationships used to determine the order of the pairwise
alignments that together create the final multiple sequence
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Figure 5. SIRT6 phylogenetic tree. This dendrogram depicts the sequence
relatedness of the human SIRT6 protein with the SIRT6 homologs from
different species. The GenPept accession numbers correspond to the ones
that have also been used for the multiple sequence alignment as shown in
Table III.

alignment. Distance along the vertical axis is proportional to
the difference between sequences; distance along the horizontal
axis has no significance at all. Trees in Fig. 5 were calculated
and drawn using PATH (Phylogenetic Analysis Task in
HUSAR) software, which estimates and realizes phylogenies
by executing the three main phylogenetic methods: distance,
parsimony and maximum likelihood, and which is hosted by
the HUSAR (Heidelberg Unix Sequence Analysis Resources)
server from the Biocomputing Service Group at the German
Cancer Research Center (DKFZ, Heidelberg).

MAHLKNECHT et al: CHARACTERIZATION OF HUMAN Sirt6

Results

Identification and cloning of cDNAs encoding human Sirt6.
Homology searches of the dbEST at NCBI (National Center
for Biotechnology Information) (33) for the Sir6 cDNA
sequence (1,2) yielded 7 positive cDNA clones: GenBank
NM_016539 (1,638 bp), AF233396 (1,638 bp), AK074810
(1,603 bp), BC0O04218 (1,398 bp), BCO05026 (1,600 bp),
BC028220 (1,585 bp) and CR457200 (1,068 bp), of which
GenBank clone NM_016539 was obtained from the Reference
Center of the German Human Genome Project (RZPD, Berlin,
Germany). The authenticity of its insert was confirmed by
DNA cycle sequencing (Fig. 2). Sequences flanking the 5' and
3" ends of the Sirt6 open reading frame were identified from the
Sirt6 human genomic clone, BAC RZPDB737G031026D6. The
human Sirt6 mRNA is transcribed into a 1,638-bp mRNA
with an open reading frame of 1,065 bp, which is translated
into a 355-aa protein with a predictive molecular weight of
39.1 kDa and an isoelectric point of 9.12. Characterization of
the 5' flanking genomic region, which precedes the Sirt6
open reading frame, revealed a TATA- and CCAAT-box less
promoter with an approximately 300-bp CpG island. A number
of GATA-x and AML-1 transcription factor binding sites were
found which remain to be further evaluated experimentally.
Fluorescence in situ hybridization analysis localized the human
Sirt6 gene to chromosome 19p13.3. Translational stop codons
in all reading frames precede the human Sirt6 open reading
frame. The 3' flanking region was shown to contain the
eukaryotic polyadenylation consensus signal AATAAA (38),
484 bp downstream of the termination of translation signal
TGA (Fig. 2).

Identification and characterization of the human Sirt6 genomic
locus. The human Sirt6 genomic clone was obtained from an
arrayed BAC genomic library (Human Genomic Set - RZPD
1.0) after in silico screening with Sirt6 cDNA (GenBank
clone NM_016539), which was shown to contain full-length
human Sirt6 cDNA. BAC clone RZPDB737G031026D6 was
identified to contain inserts with an average size of approx-
imately 120 kb in the 11.6-kb vector, pBACe3.6, which

Table II. Exon/intron splice-junctions of the human Sirz6 gene: exon sequences are given in uppercase and intron sequences

are given in lowercase letters.?

Exon Exon 5'-splice donor Intron Intron 3'-splice acceptor

no. size no. size

1 66 CCTCCCGGAGgtgagcgcgtct 1 1.564 ctcccececcacagATCTTCGACC
2 128 CCGACTTCAGgtctgtgattgt 2 1.491 tgccaccttcagGGGTCCCCAC
3 183 GCTTCCCCAGgtaacaccctgg 3 1.965 ctcttcccacagGGACAAACTG
4 60 AGTGTAAGACgtgagtgccacc 4 1.141 tccctgacacagGCAGTACGTC
5 96 GAGCCTGCAGgtgagccacccce 5 81 tcctcattgcagGGGAGAGCTG
6 81 AGGCCAGCAGgtctgacccccce 6 528 ccccggccccagGAACGCCGAC
7 124 CACCAAGCACgtaggtgtctga 7 81 gcccecececggcagGACCGCCATG
8 838

“The sizes of the single exons and introns are indicated. Consensus splice donor and splice acceptor sequences are given in bold.
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Figure 6. The chromosome region, 19p13, is a section which has been found to be involved in various malignancies. Of 522 case reports, which have been
retrieved from the Cancer Genome Anatomy Project (CGAP) database at the National Cancer Institute (45), the most frequent mutations and chromosomal
alterations have been found in acute leukemias (403; with 135 AML, 257 ALL, 11 bilineage biphenotypic leukemia), adenocarcinomas (21), MDS (17),
lymphoma (15; with 4 CLL, 1 mycosis fungoides, 3 Burkitt lymphoma, 1 Hodgkin's disease, 2 multiple myeloma, 1 T-cell lymphoma, 1 B-cell lymphoma,
2 hairy cell leukemia), myeloproliferative disease (15; with 14 CML, 1 polycythaemia vera), benign tumors (10; with 2 lipoma, 2 papilloma, 2 adenoma,
2 leiomyoma, 1 solitary fibrous tumor, 1 benign epithelial tumor), central nervous system tumors (9; with 7 meningiomas, 1 astrocytoma, 1 primitive
neuroectodermal tumor), skin cancer (5; with 4 basal cell carcinoma,l dysplastic nevus), 5 squamous cell carcinomas, 4 mucoepidermoid carcinomas, 3 pancreatic
cancers, 3 undifferentiated carcinomas, 2 teratomas, 2 giant tumor cell of the bone, 2 carcinoid tumors, 2 sarcomas, 1 mesothelioma, 1 Wilms tumor, 1 acinic

cell carcinoma and 1 Warthin's tumor.

included the human Sirt6 genomic sequence. BAC genomic
DNA was prepared according to published protocols (31) and
the Sirt6 insert was confirmed by cycle sequencing (32).
Genomic sequence comparison analyses with the BLAST
algorithm helped us with the identification of human chromo-
some 6 genomic contig NT_011245, which was sequenced
and assembled from individual clone sequences by the Human
Genome Sequencing Consortium together with NCBI. We have
used this sequence for the determination of Sirt6 introns and
exon/intron boundaries (Table II). The human Sirt6 gene spans
a region of 8,427 bp (Fig. 3). Determination of the exon-intron
splice junctions found the full-length SIRT6 protein to consist
of 8 exons ranging in size from 60 bp (exon 4) to 838 bp (exon
8). Within introns 1, 3 and 4 we identified an accumulation
of interspersed repetitive elements, SINEs (short interspersed
nuclear elements) (Fig. 3). Additionally, we have identified an
internal STS-marker, sSTSG48370, which is located within the
untranslated proportion of exon 8. The sirtuin catalytic domain,
which is highly conserved in all members of mammalian
sirtuins that have been described so far as well as in their Sir2
yeast ancestor protein, is found between amino-acid residues
52 and 221, i.e. within exons 2 and 7 of the protein (Fig. 3).

Sirt6 is a single copy gene. Sequencing and results obtained
by electronic PCR of BAC clone RZPDB737G031026D6
identified STS-marker sTSG48370 to be located within the
Sirt6 genomic sequence. These data, together with the results
obtained by electronic PCR and the reported location of
the mentioned STS-markers, indicated one single site of
hybridization of Sirt6 on human metaphase chromosomes
and its specific localization on chromosome 19p13.3 (Fig. 4).

Sirt6 expression analyses. In silico expression profile analyses
were carried out using the UniGene EST profile viewer, which
is hosted by the NCBI homepage, and the Human GeneAtlas
Gene Expression Database, which is hosted by the Genomics
Institute of the Novartis Research Foundation (GNF) and
which identified human SIRT6 to be most predominantly
expressed in bone cells and in the ovaries but practically
absent in bone marrow (39-42).

Phylogenetic analysis and pairwise sequence comparisons.
We have screened the ‘all non-redundant GenBank CDS
translations + RefSeq Proteins + PDB + SwissProt + PIR +
PRF expressed sequence tag database’ (‘nr’ at NCBI) with
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the human SIRT6 protein sequence and identified several
yeast and human histone deacetylases which were sharing a
significant degree of sequence homology with human SIRT6,
indicating a high degree of phylogenetic conservation of
protein structure and associated function throughout evolution.
The tree was constructed after bootstrapping and depicts a
subdivision into four main evolutionary branches (plants,
insects, fish and mammals) (Fig. 5). In an additional analysis,
a consensus evolutionary tree was obtained for class I through
class IV human sirtuin and non-sirtuin HDACs on the basis
of an alignment of the yeast RPD3, HDA1, SIR2 and
HDACI11 human homologous proteins (Fig. 1). Obviously,
the sirtuin family of HDACs (class III) does not reveal
significant sequence homology with the three classes of
non-sirtuin HDACs. The tree was constructed after boot-
strapping and clearly identifies four families of human
histone deacetylases with HDAC1, HDAC2, HDAC3 and
HDACS being members of the yeast RPD3 family of histone
deacetylases (so-called ‘mammalian class I histone
deacetylases’), HDAC4, HDACS, HDAC6, HDAC7, HDAC9
and HDACI10 being members of the yeast HDA1 family of
histone deacetylases (mammalian class II histone deacetylases)
and SIRT1 through SIRT7 being homologs of the yeast SIR2
protein (mammalian class IIT histone deacetylases), while
HDACII is so far the only member of a distinct group of
class IV HDAC:s (Fig. 1) (4).

Discussion

The human Sirt6 gene encodes members of the sirtuin family
of proteins which are referred to as class III NAD*-dependent
histone deacetylases on the basis of their homology to the
yeast Sir2 protein (5). The members of the sirtuin family are
characterized by a sirtuin core domain and are grouped into
four subclasses with SIRT6 being a class 4 sirtuin member
(Fig. 1). For most of the currently known human sirtuins, a
function has not yet been determined. In yeast, however,
sirtuin proteins are known to regulate epigenetic gene silencing
and suppress recombination of rDNA. In addition to their
deacetylating activity, human sirtuins may function as intra-
cellular regulatory proteins with mono-ADP-ribosyltransferase
activity (2). Human Sirt6 has been predicted to be pre-
dominantly a nuclear protein (30), which seems to be strongly
expressed in bone cells and in the ovaries, while being
practically absent in bone marrow (39-42). In the mouse
embryo, SIRT6 has been reported to reach peak levels at day
El1, which further persisted into adulthood in muscle, brain
and heart cells (15).

In the present study, we report the identification, cloning
and mapping of Sirt6 on the genomic level. Human Sirt6 is a
single-copy gene that spans a region of approximately 8.5 kb.
It is composed of 8 exons (Fig. 3 and Table II) ranging in
size from 60 bp (exon 4) to 838 bp (exon &) and reveals an
accumulation of interspersed SINEs (Alu repeats) within
introns 1, 3, and 4 (43). The SIR2 family domain is highly
conserved within all members of mammalian sirtuin proteins
that have been described so far and is located within exons 2
through 7 (Fig. 3). The 5' upstream Sirt6 promoter region
was found to contain a small 300 bp CpG island and lacks
the canonical TATA-and CCAAT boxes (Fig. 2). TATA-
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independent transcription in the presence of accumulated
CpG elements has been described to be a typical feature of
constitutively active housekeeping genes (44). Human Sirt6
mRNA encodes a 355-aa protein with a predictive molecular
weight of 39.1 kDa. Fluorescence in situ hybridization analysis
in conjunction with electronic PCR localized the human Sirt6
gene to the sub-band of chromosome 19p13.3 (Fig. 4), a region
which has been found to be involved in numerous chromosomal
abnormalities in association with malignant disease, especially
in acute leukemias (403 of 522 cases) (Fig. 6). These data
have been retrieved from the Cancer Genome Anatomy Project
(CGAP) database at the National Cancer Institute (45).

It is currently not clear to what extent chromosomal
abnormalities that involve the chromosome 19p13 chromo-
somal region have an influence on SIRT6-mediated functional
effects. It is, however, evident that a number of sirtuin proteins
are located within chromosomal regions that are particularly
prone to chromosomal breaks. In such cases, gains and losses
of chromosomal material may affect the availability of
functionally active sirtuin proteins, which in turn disturbs
the tightly controlled intracellular equilibrium of protein
acetylation and/or ADP ribosylation, respectively (46). Protein
acetylation modifiers are therefore gaining increasing attention
as potential targets in the treatment of cancer. Relaxation of the
chromatin fiber facilitates transcription and is regulated by
two competing enzymatic activities, histone acetyltransferases
(HATSs) and histone deacetylases (HDACs), which modify the
acetylation state of histone proteins and other promoter-bound
transcription factors. While HATs, which are frequently part
of multisubunit coactivator complexes, lead to the relaxation
of chromatin structure and transcriptional activation, HDACs
tend to associate with multisubunit corepressor complexes,
which results in chromatin condensation and the transcriptional
repression of specific target genes.

Unfortunately, it is currently not possible to assess to what
extent human SIRT6 is playing a role in the pathogenesis
of hematological malignancies and acute myeloid leukemia
in particular. It is, however, evident that SIRT6 contains
multiple repetitive elements at the genomic level, which
makes the region particularly prone to chromosomal breaks,
while it is located within a chromosomal region that is known
to be frequently part of chromosomal alterations in acute
leukemia. In the context of such chromosomal modifications
that may involve SIRT6, the SIRT6 protein could potentially
be either missing, dysfunctional or exhibit its enzymatic
activity at wrong times in the wrong places and therefore
contribute to an imbalance of the intracellular acetylation
status and to the development of disease. The further
characterization of the functional role of human SIRT6 is
therefore likely to become an exciting endeavor.
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