
Abstract. Epithelial-mesenchymal transition (EMT) is a
crucial event in cancer progression. We previously reported
that EMT up-regulates matrix metalloproteinase-2 (MMP-2)
expression in squamous cell carcinoma (SCC) cells. In this
study, we showed that Tet Off-induced expression of Snail
or SIP1, and treatment with TGF-ß1 induced EMT in terms of
down-regulation of E-cadherin, and up-regulation of vimentin
and MMP-2 expression with morphological changes. In
SCC cells, SIP1 expression was induced by Snail and TGF-ß1,
but Snail expression was not induced by SIP1 or TGF-ß1.
However, expression of Snail but not SIP1 was strongly
increased by TGF-ß1 in highly invasive SCC cells with
mesenchymal phenotypes. Analysis of the MMP-2 promoter
revealed that an Ets-1 binding site, located between position
-1255 and -1248 relative to the transcriptional start site, was
critical for the activation by Snail, SIP1 and TGF-ß1 in SCC
cells. Induced expression of Snail and SIP1 resulted in the
increased expression of Ets-1 and DNA-binding activities
of nuclear proteins to the Ets-1-binding site and strong Ets-1
expression was detected in highly invasive SCC cells. Further-
more, overexpression of Ets-1 induced the promoter-activation
and expression of MMP-2 without EMT. These results indicate
that EMT induces Ets-1 expression, which activates the MMP-2
promoter, but Ets-1 by itself has no activity to induce EMT
in SCC cells.

Introduction

The loss of epithelial characteristics and acquisition of a
mesenchymal phenotype are important events in the progression
towards more invasive and metastatic cancerous cells. This
transformation is referred to as epithelial-mesenchymal
transition (EMT), which was originally found to occur during
embryonic development including gastrulation and neuro-
epithelium formation (1,2).

E-cadherin is an adhesion molecule of epithelial cells
whose expression is frequently down-regulated in invasive
cancers. Genes encoding transrepressors of E-cadherin, through
binding to E-box sequences in the E-cadherin promoter, have
been reported to closely associate with EMT. Snail and Zeb
families of zinc-finger proteins and basic helix-loop-helix
transcription factors including E12/E47 (3) and Twist (4) have
been identified as repressors of E-cadherin and triggers of
EMT. An inverse correlation between Snail and E-cadherin
expression has been reported in many types of cancer including
squamous cell carcinoma (SCC) (5-8). Overexpression of
Snail results in the dramatic down-regulation of E-cadherin,
conversion to a fibroblastic phenotype, and acquisition of
more invasive properties (9-12). The Zeb zinc-finger homeobox
family includes Zeb-1/‰EF1 and Zeb-2/Smad-interacting
protein 1 (SIP1) (13). Increased expression of SIP1 in invasive
cancers without expression of E-cadherin has been also
reported (14,15). SIP1 is expressed in response to TGF-ß1
and binds to Smads, the TGF-ß1 signaling proteins (16-18).
TGF-ß1 also induces EMT in several epithelial cell types
(19-21). Different effects of TGF-ß1 on the expression of the
Snail or SIP1 gene have been reported and the correlation of
Snail with SIP1 expression is still not clear (14,22-24).

Besides E-cadherin, other epithelial cell-specific molecules
are repressed by EMT, such as desmoplakins (9) cytokeratin 18
and MUC1 (23), claudin, occludin, · and ß-catenin (25-27).
The up-regulation of mesenchymal markers including vimentin
and fibronectin (9,28) has also been reported. We previously
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reported that the expression of Wnt-4 was repressed and that
of Wnt-5a was induced by EMT (29). Furthermore, we showed
that MMP-2, a matrix-degrading enzyme, the expression of
which has been reported to be increased in many types of
invasive cancers (30,31), was induced by EMT in SCC cells
(12). Both down- and up-regulated proteins may contribute
to the acquisition of more invasive properties of cancer cells
through loss of cell adhesion and increased capabilities for
matrix degradation and migration. However, the functions
and control mechanism of the individual proteins, especially
the mechanism of the up-regulation, which may not be due to
repression of the E-box, should be clarified. In this report, we
studied the expression of Snail and SIP1 in SCC cells with
both epithelial and mesenchymal phenotypes and the effects
of TGF-ß1 on the expression of these genes. Furthermore,
we studied the mechanism of up-regulation of MMP-2
expression and identified Ets-1 as a new effector of EMT,
existing downstream of SIP1, Snail or TGF-ß1.

Materials and methods

Cells and cell culture. The human vulval epithelial cell
line A431 was obtained from the Japanese Collection of
Research Bioresources. The human oral SCC cell lines,
OM-1, HOC719-PE, HOC719-NE, TSU and HOC313 have
been reported previously (5,12,29,32,33). HOC719-PE and
HOC719-NE cells were isolated from HOC719 cells expressing
E-cadherin heterogeneously (5). Stable Snail-overexpressing
cells, A431SNA1, A431SNA2, OM-1SNA1 and OM-1SNA2,
and their control pcDNA3-transfected cells, A431pcD1,
A431pcD2, OM-1pcD1 and OM-1pcD2, were described
previously (12,29). All cells were cultured at 37˚C in a
humidified atmosphere of 5% CO2 in air and maintained with
DMEM (Sigma, St. Louis, MO, USA) supplemented with
10% fetal bovine serum (Sigma).

Reverse transcriptase-polymerase chain reaction (RT-PCR)
analysis. Total RNA was isolated from the cells using TRIzol
(Invitrogen, Carlsbad, CA, USA). RT-PCR analysis was
performed as described previously (5,12,29). The RNA samples
were first treated with deoxyribonuclease I (Invitrogen)
and converted into cDNA using random hexamer primers
and reverse transcriptase (Invitrogen). PCR consisting of
30 cycles of denaturing at 94˚C for 30 sec, annealing for
30 sec and extension at 72˚C for 1 min was carried out using
PCR Master (Boehringer Mannheim GmbH, Germany).
Amplified products were analyzed on 1.8% agarose gels. The
product size, annealing temperature, and primer sequences
were: SIP1, 466 bp, 58˚C, 5'-CTCCAGGAGTAATACTCCT
TCTCC-3' (forward), 5'-TAGGAAGCTCATCTGATCCAG
TCC-3' (reverse). Ets-1, 395 bp, 58˚C, 5'-GCCTATCCAGA
ATCCCGCTATAC-3' (forward), 5'-CGCTGCAGGCTGTT
GAAAGATGA-3' (reverse). The other primers were described
previously (12,29). All of the primers were obtained from
Hokkaido System Science Co., Ltd. (Sapporo, Japan).

Western blot analysis. Western blot analysis was performed
as previously described (12,29). Cell lysate was denatured
at 100˚C for 5 min, separated by SDS-polyacrylamide gel
electrophoresis and transferred onto a nitrocellulose membrane

(Bio-Rad, Richmond, CA, USA). The membranes were
incubated with a blocking buffer consisting of 5% skimmed
milk and 1% BSA in TBST (137 mM NaCl, 2.68 mM KCl,
0.1% Tween-20, and 25 mM Tris-HCl, pH 7.5) for 3 h, with
the primary antibody for one night at 4˚C, and with secondary
antibody in TBST. The signals were detected using an enhanced
chemiluminescence (ECL) system (Amersham, Piscataway,
NJ, USA) and photographed with an ECL Mini-camera
(Amersham). Primary antibodies used were: rat monoclonal
anti-HA, clone 3F10 (Roche, Mannheim, Germany), mouse
monoclonal anti-Myc, clone 9B11 (Cell Signaling Technology,
Beverly, MA, USA), rabbit polyclonal anti-c-Ets-1 (Active
Motif, Carlsbad, CA, USA), rabbit polyclonal anti-MMP-2
(Biomol, Plymouth Meeting, PA, USA), mouse monoclonal
anti-V5 (Invitrogen) and HECD-1. Secondary antibodies
were anti-rat IgG (Sigma), anti-mouse IgG (Dako) and anti-
rabbit IgG (Dako).

Vector construction and transfection. An inducible Snail
expression vector, pTRE2-SNA, was constructed by trans-
ferring the Snail cDNA from pCDNA3-mm snail-HA (10,12),
a gift from Dr A.G. De Herreros (Universitat Pompeu Fabra,
Barcelona, Spain), to a BamHI/NotI-digested pTRE2 vector
(Clontech, Palo Alto, CA, USA). Inducible expression vectors
for mouse full-length SIP1 (pTREHyg-SIP1) and the mutant
SIP1 (pTREHyg-SIP1/MT) with mutated zinc finger clusters
at both the N- and C-terminus and lacking DNA-binding
activity (14) were constructed in pTREHyg (Clontech). A431
cells were transfected with a regulator plasmid, pTet-Off
(Clontech), using Tfx-20 (Promega) according to the
manufacturer's directions. Sixty G418-resistant clones were
isolated using cloning rings (Iwaki, Tokyo, Japan). Each
clone was transiently transfected with pTRE2-Luc (Clontech)
and screened for doxycyline-dependent induction of luciferase
activity with a low background. One of the clones, A431-Tet
Off-26, was used for further isolation of the cells which
doxycyclin-dependently expressed the transfected genes.
A431-Tet SNA cells were isolated from A431-Tet Off-26
cells by co-transfection with pTRE2-SNA and pTK-Hyg
(Clontech) and selection with 400 μg/ml of hygromycin B
(Invitrogen). The control A431-Tet TRE cells were similarly
isolated with pTRE2 and pTK-Hyg. A431-Tet SIP1 and
A431-Tet SIP1/MT cells were obtained by transfection
with pTREHyg-SIP1 and pTREHyg-SIP1/MT, respectively.
These cells were cultured in the presence of 1 μg/ml of
doxycycline to prevent expression of the transfected genes,
which was induced by withdrawing doxycycline from the
culture medium. To construct a human ets-1 expression
vector, pCDNA6/V5 Ets-1, full-length Ets-1 cDNA was
amplified by RT-PCR from mRNA of human gingival fibro-
blasts and cloned into a KpnI/ApaI-digested pcDNA6/V5
vector (Invitrogen). The sequences of the PCR primers used
were 5'-TCTAGGTACCATGAAGGCGGCCGTCGATCT-3'
(forward) and 5'-AAGTGGGCCCTCGTCGGCATCTGGCT
TGA-3' (reverse). PCR products were confirmed by sequence
analysis using an ABI PRISM 3100-Avant Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA). A431 cells
were transfected with pCDNA6/V5 Ets-1 or pCDNA6/V5
and stable transfectants were selected with 20 μg/ml of
blasticidin (Invitrogen).
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Luciferase analysis. Human MMP-2 promoter fragments
from -1714, -1630, -1255, -1248, -960 and -411 to +22 relative
to the transcriptional start site were amplified by PCR from
genomic DNA of normal human fibroblasts. The primer
sequences used were (-1714): 5'-CAAGGTACCTCCCAAG
AGGGTCCTTTAAACTG-3'; (-1630): 5'-ATCAGGTACCG
AAGCCCACTGAGACCCAAGCCG-3'; (-1271): 5'-ACGT
GGTACCAGAAGTCACTTCTTCCAGGAAGCC-3'; (-1255):
5'-CCGAGGTACCAGGAAGCCTTCCTTGATTGTCTT
TA-3'; (-1248): 5'-GGCAGGTACCCTTCCTTGATTGTCTT
TACTAGTTTAGGGGC-3'; (-960): 5'-TGGCACGCGTGG
GTGCTTCCTTTAACATGCTAATG-3'; (-411): 5'-CATTC
CTACGCGTTCCTGACCCCAGGGAGT-3'; (-211): 5'-CTC
T A A C G C G T G G C C C C T G A C T G C T C T A T T T C - 3 ' ;
(reverse,+22): 5'-CAACCTCGAGCCACCGCCTGAGGA
AGTCTG-3'.

PCR products were confirmed by sequence analysis. PCR
fragments of the MMP-2 promoter were digested with KpnI
or MluI and XhoI and inserted into the KpnI or MluI/XhoI-
digested pGL2-Basic Vector (Promega). A431, A431-TetSNA
or A431-TetSIP1 cells were co-transfected with 4 μg of the
reporter vector containing the MMP-2 promoter sequence and
1ng of pRL-CMV as an inner control using Lipofectamine 2000
(Invitrogen). In the study of the effects of Ets-1 on the MMP-2
promoter, A431 cells were further co-transfected with 2 μg
of pcDNA6/V5Ets-1 or pcDNA6. After 48 h of transfection,
cells were lysed with passive lysis buffer and the promoter
activity was measured using a Dual-Luciferase Reporter Assay
System (Promega) according to the manufacturer's protocol.

Electrophoretic mobility shift analysis. Extraction of the
nuclear proteins was performed as described (34). Cells were
homogenized in 0.4 ml of 20 mM HEPES (pH 7.9) containing
0.4 M NaCl, 1 mM EDTA, 1.5 mM MgCl2, 20% glycerol,
10 mM NaF, 1 mM Na3VO4, 0.2 mM DTT, 20 mM ß-glycero-
phospate, 0.5 mM PMSF, 60 μg/ml aprotinin and 2 μg/ml
leupeptin. The samples were incubated on ice for 15 min,
then centrifuged at 15,000 rpm for 10 min at 4˚C. The resulting
supernatants were collected and the protein concentration
was determined. Synthetic 20-bp oligonucleotides with the

MMP-2 promoter sequence from -1261 to -1241 relative to
the transcriptional start site containing the Ets-1-binding
sequence (5'-TTCTTCCAGGAAGCCTTCCT-3') and its
complementary sequence were heated for 10 min at 95˚C
with subsequent cooling to room temperature over 6 h. The
probe was end-labeled with [Á-32P]-ATP using T4 poly-
nucleotide kinase (Amersham). The nuclear protein (10 μg)
was incubated with 10 fmol of the radiolabeled probe at
room temperature for 30 min in binding buffer [20 mM
HEPES (pH 7.9), 20% glycerol, 0.1 M NaCl, and 0.2 M
EDTA] containing 0.2 mM PMSF, 0.5 mM DTT, 300 μg/ml
acetylated BSA, and 2 μg of poly (dI-dC) in a total volume of
20 μl. The sample was electrophoresed on a non-denaturing
4% polyacrylamide gel, in a buffer containing 67 mM Tris-HCl,
10 mM EDTA, and 33 mM sodium acetate. The gel was run
at 150 V for 2 h, dried and subjected to autoradiography. The
anti-Ets-1 antibody (1 μl) was added to the reaction mixture
for the supershift experiments. The sequence of the mutant
oligonucleotide used in the competition assay was 5'-TTCTT
CCATTAAGCCTTCCT-3'.

Results

Different genes expressed in SCC cells with epithelial and
mesenchymal phenotypes. We previously reported that A431,
OM-1 and HOC719-PE cells exhibited a cuboidal morphology
whereas HOC719-NE, HOC313 and TSU cells showed a
spindle-like morphology and suggested that these cells have
acquired EMT (12,29). RT-PCR analysis revealed decreased
expression of E-cadherin and strong expression of vimentin,
MMP-2, Snail and ‰EF1 in HOC719-NE, HOC313 and
TSU cells compared to A431, OM-1 and HOC719-PE cells
(Fig. 1A). We found that SIP1 was also strongly expressed in
these cells. An inverse correlation in these genes was similarly
observed between the control and Snail-overexpressing clones
of both A431 and OM-1 cells (Fig. 1B).

Change of gene expression with induction of Snail expression.
We established A431-Tet SNA cells, which showed a
doxycyclin-dependent expression of Snail, and the control
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Figure 1. Induction of EMT by Snail overexpression in SCC cells. (A), Gene expression examined by RT-PCR in six human SCC cell lines. lane 1, A431; lane 2,
OM-1; lane 3, HOC719-PE; lane 4, HOC719-NE; lane 5, HOC313; lane 6, TSU cells. (B), Gene expression in Snail-overexpressing and control clones. Lane 1,
A431pcD1; lane 2, A431pcD2; lane 3, A431SNA1; lane 4, A4341SNA2; lane 5, OM-1pcD1; lane 6, OM-1pcD2; lane 7, OM-1SNA1; lane 8, OM-1SNA2.
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A431-Tet TRE cells. The expression of Snail was induced by
withdrawing doxycycline from the culture medium. After
7 days, A431-TetSNA cells changed from a cuboidal to a
spindle-shaped morphology with loss of the cell-cell contacts
(Fig. 2A). Western blotting using anti-HA antibody which
recognized the HA epitope attached to the C-terminus of the
Snail protein demonstrated the induction of Snail expression.
Decreased expression of E-cadherin protein was detected
by both Western blotting in these cells (Fig. 2B). RT-PCR
analysis demonstrated the down-regulation of E-cadherin
expression, and up-regulation of vimentin, MMP-2, ‰EF1
and SIP-1 mRNA expression in A431-Tet SNA cells, but not
in control A431-Tet TRE cells (Fig. 2C).

Effects of SIP1 on expression of the EMT-associated genes.
We also established A431 clones in which wild-type or mutated
SIP-1 lacking the DNA-binding activity was expressed.
A431-Tet SIP1 cells cultured in the absence of doxycycline
had an enlarged intercellular space, although the spindle
shape was less significant than that of Snail-expressing cells
(Fig. 3A). The expression of both wild-type and mutated
SIP1 protein was confirmed by Western blotting using anti-
Myc antibody recognizing the Myc epitope at the C-terminus
of the SIP1 proteins (Fig. 3B). The change of cell shape
was not observed in A431-Tet SIP1/MT cells in which the
mutated SIP1 protein was expressed (data not shown). By
RT-PCR analysis, down-regulation of E-cadherin expression,
and up-regulation of vimentin and MMP-2 expression were
detected accompanied by the induction of SIP1 protein in
A431-Tet SIP1, but not in A431-Tet SIP1/MT cells (Fig. 3C).
However, although the expression of both SIP1 and ‰EF1

was up-regulated by Snail (Fig. 2C), we found that neither
Snail nor ‰EF1 expression was induced by SIP1 (Fig. 3C).

Effects of TGF-ß1 on EMT in SCC cells. To study the effect
of TGF-ß1, SCC cells were treated with 2 ng/ml of TGF-ß1
for 72 h. A431 cells showed a morphological change to a
more spindle-like shape with reduced cell-cell contact
(Fig. 4A). RT-PCR analysis showed that the expression of
E-cadherin mRNA was down-regulated, and that of vimentin
and MMP-2 was increased by TGF-ß1 in both A431 and
OM-1 cells (Fig. 4B). However, TGF-ß1 had different effects
on the expression of Snail and SIP1 in SCC cells with the
epithelial or mesenchymal phenotype. In A431 cells, increased
expression of SIP1 was detected but Snail expression was not
induced by TGF-ß1. In contrast, the expression of SIP1 was
constant, but the expression of Snail was strongly increased
by TGF-ß1 in HOC313 cells (Fig. 4C). 

Activation of MMP-2 promoter by Snail, SIP1 and TGF-ß1
through an Ets-1-binding site. To study the regulatory
mechanism of the expression of MMP-2 by EMT, we
constructed reporter vectors containing MMP-2 promoter
sequences (Fig. 5A). A431-Tet SNA and A431-Tet SIP1 cells
were transfected with these vectors and cultured for 2 days in
the presence or absence of doxycycline. Luciferase analysis
demonstrated the activation of promoter fragments containing
sequences up to -1714, -1630, -1271 and -1255 upon induction
of Snail expression in A431-Tet SNA cells. However, an
abrupt decrease in activation was detected containing promoter
fragments -1255 and -1248 (Fig. 5B). Similarly, a strong
activation of fragments -1714, -1630, -1271 and -1255, but
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Figure 2. Effects of inducible Snail expression in A431 cells. (A), A431-Tet SNA cells cultured in the presence (1) or absence (2) of doxycycline. Photographs
were taken under a phase-contrast microscope at a magnification x100. (B), Expression of Snail and E-cadherin proteins analyzed by Western blotting. A431-Tet
SNA (lanes 3, 4) and control A431-Tet TRE cells (lanes 1, 2) were cultured with (lanes 1, 3) or without (lanes 2, 4) doxycycline. (C), Gene expression in
A431-Tet SNA (lanes 3, 4) and A431-Tet TRE cells (lanes 1, 2) cultured with (lanes 1, 3) or without (lanes 2, 4) doxycycline.
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the loss of activation of -1248, -960, -411 and -211 of the
MMP-2 promoter was observed in A431-Tet SIP1 cells
(Fig. 5C). Furthermore, TGF-ß1 induced strong promoter

activity of fragments up to -1255 bp, but not less than -1248 bp,
of MMP-2 promoter (Fig. 5D). These results indicated that
an Ets-1-binding sequence, located between -1255 and -1248
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Figure 3. Effects of inducible SIP1 expression in A431 cells. (A), A431-Tet SIP1 cells cultured in the presence (1) or absence (2) of doxycycline. Photographs
were taken under a phase-contrast microscope at a magnification x100. (B), Expression of SIP1 and E-cadherin proteins analyzed by Western blotting.
A431-Tet SIP1 (lanes 3, 4) and A431-Tet SIP1/MT cells (lanes 1, 2) were cultured with (lanes 1, 3) or without (lanes 2, 4) doxycycline. (C), Gene expression
in A431-Tet SIP1/MT (lanes 1, 2) and A431-Tet SIP1 cells (lanes 3, 4) cultured with (lanes 1, 3) or without (lanes 2, 4) doxycycline.

Figure 4. Effects of TGF-ß1 on EMT in SCC cells. (A), Morphology of A431 cells cultured in the absence (1) or presence (2) of TGF-ß1 for 72 h.
Photographs were taken under a phase-contrast microscope at a magnification of x100. (B), Gene expression in A431 and OM-1 cells cultured with TGF-ß1.
(C), Effects of TGF-ß1 on gene expression of Snail and SIP1 in SCC cells.
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relative to the transcriptional start site (Fig. 5A), was
responsible for the activation of the MMP-2 promoter
induced by Snail, SIP1 and TGF-ß1 in SCC cells. 

Up-regulation of Ets-1 expression by EMT in SCC cells.
Western blotting using an anti-Ets-1 antibody demonstrated
increased Ets-1 protein expression in both A431-Tet SNA
and A431-Tet SIP1 cells cultured in the absence of doxycycline
(Fig. 6A). RT-PCR analysis revealed an up-regulation of
Ets-1 mRNA expression in A431 cells treated with TGF-ß1
(Fig. 6B). At RT-PCR analysis, strong mRNA expression of
Ets-1 was detected in HOC719-PE, HOC313, TSU cells
(Fig. 6C), however there were no relationships between other
Ets genes expressions and EMT in SCC cells (data not shown).

Up-regulation of Ets-1 expression was detected accompanied
with induction of Snail and SIP1 in SCC cells (Fig. 6D).

Induction of Ets-1 binding to the MMP-2 promoter by Snail
and SIP1. We next studied the DNA-binding activities of
nuclear proteins extracted from A431-Tet SNA and A431-Tet
SIP1 cells cultured in the presence or absence of doxycycline.
A double-stranded oligonucleotide with 20-bp of the MMP-2
promoter sequence from -1261 to -1241 relative to the trans-
criptional start site was 32P-radiolabeled and incubated with
the nuclear extracts. Although the nuclear protein extracted
from A431-Tet SNA cells cultured in the presence of doxy-
cycline showed weak binding to the target DNA, binding was
clearly enhanced in the cells cultured in the absence of doxy-
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Figure 5. Activation of MMP-2 promoter by Snail, SIP1 and TGF-ß1. (A), Structures of MMP-2 promoter harboring the 5' deletion constructs. (B), MMP-2
promoter activity in A431-Tet SNA cells. Cells were cultured in the presence (∫) or absence (ƒ) of doxycycline for 48 h. (C), MMP-2 promoter activity in
A431-Tet SIP1 cells. Cells were cultured in the presence (∫) or absence (ƒ) of doxycycline for 48 h. (D), Effect of TGF-ß1 on MMP-2 promoter activity in
A431 cells. Cells were cultured in the presence (∫) or absence (ƒ) of TGF-ß1 for 48 h. Luciferase assay was performed as described in Materials and methods.
Fold-increase over control cells transfected with the pGL2 vector and the mean ± SD (n=3) are shown. Data shown are representative of at least three
experiments.
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cycline (Fig. 7A, lanes 1 and 2). This binding was sequence-
specific because it was inhibited by the addition of a 30-fold
excess of unlabeled oligonucleotide (Fig. 7A, lanes 4 and 5).
Incubation with the anti-Ets-1 antibody resulted in a shifted
band (Fig. 7A, lane 3), indicating that the DNA-protein
complex contained the Ets-1 protein. Similarly, the nuclear
extract from A431-TetSIP1 cells cultured in the absence of
doxycycline showed strong DNA-binding activity which was
inhibited by addition of an excess of unlabeled oligonucleotide
containing a wild-type, but not mutant, Ets-1-binding
sequence. The DNA-protein complex was also partially
shifted by the anti-Ets-1 antibody (Fig. 7B).

Ets-1 activates the MMP-2 promoter without induction of
EMT. To study the effect of Ets-1 on the expression of MMP-2,
an expression vector for Ets-1 was constructed and
transiently transfected into A431 cells with the reporter
vectors containing MMP-2 promoter sequences. Luciferase
analysis demonstrated a strong activation of the MMP-2
promoter from -1255 to +22 on transfection of the Ets-1-
expression vector. A significant decrease in the activation by
the Ets-1 expression was observed with a fragment from -1248
to +22 of the promoter (Fig. 8A). A stable Ets-1-over-
expressing clone (A431Ets1) and a control clone (A431-
pcDV5) were isolated. Western blotting using anti-Ets-1 and
anti-V5 antibody demonstrated strong expression of the
transfected Ets-1 protein in A431Ets1, but not A431pcDV5
cells (Fig. 8B). Increased protein expression of MMP-2 in
A431Ets1 cells was clearly detected using anti-MMP-2
antibody. RT-PCR analysis also showed the increased
expression of MMP-2 mRNA in A431Ets1 cells (Fig. 8C,
lane 2) compared to A431pcDV5 cells (lane 1). Furthermore,
MMP-1, -3, -7, -9 expressions were up-regulated. However, no
morphological change was seen in A431Ets1 cells (data not
shown). No up-regulation of vimentin expression was detected

but increased rather than decreased expression of E-cadherin
was observed in A431Ets1 cells, indicating that the
overexpression of Ets-1 did not induce EMT in A431 cells
(Fig. 8C).
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Figure 6. Induction of Ets-1 expression by Snail, SIP1 and TGF-ß1. (A), Expression of Ets-1 protein in A431-Tet SNA (lanes 1, 2) and A431-Tet SIP1
(lanes 3, 4) analyzed by Western blotting. Cells were cultured in the presence (lanes 1, 3) or absence (lanes 2, 4) of doxycycline. (B), Gene expression of Ets-
1 examined by RT-PCR in A431 cells cultured in the presence of TGF-ß1. (C), Expression of Ets-1 and MMP-2 analyzed by RT-PCR in SCC cells. Lane 1,
A431; lane 2, OM-1; lane 3, HOC719-PE; lane 4, HOC719-NE; lane 5, HOC313; lane 6, TSU cells. (D), Expression of Ets-1 in Snail or SIP1 overexpressing
(lane 2, A431SNA1; lane 4, OM-1SNA1; lane 6, A431-Tet SNA without doxycycline; lane 8, A431-Tet SIP1 without doxycycline) and control cells (lane 1,
A431pcD1; lane 3, OM-1pcD1; lane 5, A431-Tet SNA with doxycycline; lane 7, A431-Tet SIP1 with doxycycline).

Figure 7. Induction of Ets-1 binding to the MMP-2 promoter by Snail and
SIP1. Nuclear extracts from A431-Tet SNA (A) and A431-Tet SIP1 (B)
cells were incubated with a 32P-labeled double-stranded oligonucleotide with
the MMP-2 promoter sequence. Cells were cultured in the presence (lane 1)
or absence (lanes 2-5) of doxycycline. The nucleoprotein complexes were
incubated with the anti-Ets-1 antibody (lane 3), a 30-fold excess of cold
oligonucleotide (lane 4) or a cold oligonucleotide with a partially mutated
sequence at the Ets-1 site (lane 5) as described in Materials and methods.
Specific DNA-binding protein complexes are depicted by block arrowheads,
and are supershifted with anti-Ets-1 antibody (open arrowhead).

Taki 9_8  29/12/05  16:22  Page 493



Discussion

In this study, we found strong expression of Snail, SIP-1 and
‰EF1 in SCC cells with a mesenchymal phenotype, but not in
those with an epithelial phenotype. In stable Snail-over-
expressing clones of A431 and OM-1 cells, increased levels
of SIP1 and ‰EF1 were also detected. Tet Off-induced
expression of Snail or SIP1, and treatment with TGF-ß1,
resulted in EMT in A431 cells, in terms of the down-regulation
of E-cadherin and up-regulation of vimentin and MMP-2
expressions accompanied by changes of cell shape. The
expression of Snail resulted in increased levels of SIP1 and
‰EF1, whereas the expression of SIP1 did not induce Snail or
‰EF1 expression. TGF-ß1 induced the expression of SIP1 but
not Snail in A431 and OM-1 cells, while it strongly increased
the expression of Snail without affecting the levels of SIP1 in
the cells with a mesenchymal phenotype.

Although TGF-ß1 induces EMT in several epithelial cells
(19-21), it has different effects on the expression of the Snail
and SIP1 genes. Peinado et al reported that TGF-ß1 induced
EMT with the expression of Snail in MDCK cells which
was dependent on the MAPK signaling pathway (24). In
contrast, induction of EMT and SIP-1 expression, but not
Snail expression, by TGF-ß1 has been reported in mouse
mammary cells (14) and in hepatocyte cell lines (22). Further-
more, no clear correlation between Snail and SIP1 expression
has been reported; Snail mRNA levels were not influenced
by SIP1 (14) and Snail induced the expression of ‰EF1 but
not SIP1 (23). These results, taken together, indicated that
the effects of TGF-ß1 on Snail and SIP1 expression are
dependent on the epithelial or mesenchymal phenotype of
SCC cells.

We next studied the mechanism of the up-regulation of
MMP-2 expression accompanying EMT. Studies have shown
a positive correlation between increased activity of MMP-2
and invasion and metastasis by cancer cells (12,30,31). We
also previously reported strong activity and gene expression
of MMP-2 in SCC cells with a mesenchymal phenotype.

Furthermore, both the expression and activity of MMP-2
were induced by Snail in SCC cells (12). Similarly, MMP-2
mRNA expression was induced by EMT in mouse mammary
cells (35). In the present study, we found that the expression
of MMP-2 was induced by not only Snail but also SIP1
and TGF-ß1. Luciferase analysis using reporter vectors
containing MMP-2 promoter sequences revealed that an
Ets-1-binding site, located between -1255 and -1248 relative
to the transcriptional start site, was the response sequence
for the activation by Snail, SIP1 and TGF-ß1. Although our
previous study using shorter MMP-2 promoter sequences
and the transient expression of Snail suggested that a region
between -411 and -262 was necessary for about a 2-fold
induction (12), the present study using 1714 bp of the MMP-2
promoter sequence and inducible expression vectors clearly
indicated that the Ets-1 site was responsible for a more than
10-fold induction of the promoter activity.

We further demonstrated that the expression of Ets-1 was
induced by all of Snail, SIP1 and TGF-ß in A431 cells and
strong expression of Ets-1 and MMP-2 was detected in
SCC cells with a mesenchymal phenotype. Nuclear proteins
extracted from the cells with Tet Off-induced expression of
Snail or SIP1 showed increased DNA-binding activity to the
Ets-1 site. Furthermore, the MMP-2 promoter activity was
strongly induced by a transient expression of Ets-1, and
increased protein expression of MMP-2 was detected in the
stable Ets-1-overexpressing cells. These results indicated a
cascade mechanism of MMP-2 expression; Snail, SIP1 and
TGF-ß1 induced the expression of Ets-1 accompanying
EMT, and the Ets-1 bound to and activated the MMP-2
promoter, and finally induced the expression of MMP-2. 

Ets proteins constitute a family of transcription factors
implicated in the regulation of several matrix-degrading
proteinases (36-39). Ets-1 has been reported to activate the
expression of MMP-1, -3, and -9 and urokinase-type
plasminogen activator (uPA) via the Ets-1-binding sites in
the promoters of these genes (40-42). Increased expression of
Ets-1 was reported in several invasive cancers (43-45). In the
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Figure 8. Induction of MMP-2 expression and promoter activity by Ets-1. (A), A431 cells were cotransfected with MMP-2 promoter constructs and
pcDNA6/V5Ets-1 (ƒ) or control pcDNA6/V5 (∫). After 48-h incubation, luciferase analysis was performed. Fold-increase over control cells transfected with
the pGL2 vector and the mean ± SD (n=3) are shown. Data shown are representative of three experiments. (B), A431 cells were transfected with
pcDNA6/V5Ets-1 (lane 2) or control pcDNA6/V5 (lane 1) and stable clones were isolated. The expression of Ets-1 and MMP-2 proteins was analyzed by
Western blotting. (C), Expression of EMT-associated genes and MMPs in Ets1-overexpressing (lane 2, A431Ets1) and control (lane 1, A431pcDV5) cells
examined by RT-PCR.
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present study, the expression of MMP-1, -3 and -9 was also
induced by overexpression of Ets-1 in A431 cells. However,
there was no clear correlation between the expression levels
of MMP-9 and the status of the epithelial or mesenchymal
phenotype of SCC cells (5). Furthermore, the expression
levels of MMP-1 and MMP-3 did not associate with the
epithelial or mesenchymal phenotype of these cells (data not
shown).

Among the several transcription factors which have been
reported to activate the MMP-2 promoter (46-50), Reisdorff
et al found that a specific Ets-1-binding site, located between
-1053 and -1004 relative to the transcriptional start site,
was responsible for the constitutively strong expression of
MMP-2 in rat glomerular mesangial cells (49). They also
demonstrated an increased expression of MMP-2 protein
caused by a transient expression of Ets-1 in these cells.
Recently, Ito et al reported that prostaglandin E2 enhanced the
invasiveness of pancreatic cancer through an Ets-1-dependent
induction of MMP-2 expression (51). Although Ets-1-binding
site exists in the promoter sequences of several MMP genes,
a TATA-box and NF-κB regulatory element, which are present
in the promoters of MMP-1, -3 and -9, are absent in the
MMP-2 promoter (52-54). These results, taken together
with ours, suggest that the control mechanism for MMP-2
expression accompanying EMT is different from that for
the other MMPs, which might be influenced by other trans-
cription factors including other members of the Ets family.

However, it is worth noting that the up-regulation of
vimentin and a change of cell morphology were not induced
by the overexpression of Ets-1. Furthermore, increased, rather
than decreased, level of E-cadherin expression was detected
in the Ets-1-overexpressing cells. These results indicate that
Ets-1 functions as one of the effectors of EMT. Although
Ets-1 by itself has no activity to induce EMT, it enhances the
malignancy of SCC cells through the up-regulation of MMP-2
expression in the course of EMT. EMT may simultaneously
activate independent signal pathways affecting each other.
Further characterization of the signal pathways of EMT will
provide important targets for drug discovery, which should
lead to new therapeutic approaches for the treatment of
highly invasive and metastatic cancers.
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