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Abstract. Cardiovascular diseases are caused by patho‑
logical cardiac remodeling, which involves fibrosis, 
inflammation and cell dysfunction. This includes autophagy, 
apoptosis, oxidative stress, mitochondrial dysfunction, 
changes in energy metabolism, angiogenesis and dysregula‑
tion of signaling pathways. These changes in heart structure 
and/or function ultimately result in heart failure. In an 
effort to prevent this, multiple cardiovascular outcome trials 
have demonstrated the cardiac benefits of sodium‑glucose 
cotransporter type 2 inhibitors (SGLT2is), hypoglycemic 
drugs initially designed to treat type 2 diabetes mellitus. 
SGLT2is include empagliflozin and dapagliflozin, which 
are listed as guideline drugs in the 2021 European 
Guidelines for Heart Failure and the 2022 American 
Heart Association/American College of Cardiology/Heart 
Failure Society of America Guidelines for Heart Failure 
Management. In recent years, multiple studies using animal 
models have explored the mechanisms by which SGLT2is 
prevent cardiac remodeling. This article reviews the role 
of SGLT2is in cardiac remodeling induced by different 
etiologies to provide a guideline for further evaluation of 
the mechanisms underlying the inhibition of pathological 
cardiac remodeling by SGLT2is, as well as the development 
of novel drug targets.
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1. Introduction

In the event of external triggers, cardiac insufficiency responds 
to adaptive alterations in both the structure and function of 
the heart, commonly referred to as cardiac remodeling. These 
alterations include changes in genomic expression levels, cell 
morphology and abnormal interstitial secretion (1,2). Cardiac 
remodeling is divided into physiological and pathological 
types. Physiological cardiac remodeling is a reversible adap‑
tive reaction that primarily occurs during growth, exercise 
and pregnancy (3). Where pathological cardiac remodeling 
is an irreversible adaptive response caused by numerous 
conditions, including myocardial infarction (MI), isch‑
emia/reperfusion (I/R) injury, pressure loading, inflammation 
and oxidative stress (4,5). Direct manifestations of cardiac 
remodeling include myocardial hypertrophy and cardiac 
fibrosis and continued poor remodeling can lead to heart 
failure (6‑8). Thus, determining the mechanisms that lead to 
cardiac remodeling and preventing undesirable remodeling 
is essential.

Sodium‑glucose cotransporter type 2 inhibitors (SGLT2is) 
are hypoglycemic medications that inhibit SGLT2 in the 
renal tubules, decreasing glucose reabsorption, lowering 
the renal glucose threshold and initiating glucose excretion 
in the urine (9). Compared with other traditional hypogly‑
cemic drugs, SGLT2is are primarily used for treating type 2 
diabetes but have also been reported to exert cardiovascular 
benefits. According to cardiovascular outcome studies, 
SGLT2is reduce the incidence of hospitalization due to heart 
failure (10‑14). The ‘new tetrad’ of cornerstone heart failure 
medications has replaced the original ‘golden triangle’ and 
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now includes beta‑blockers, aldosterone receptor antagonists, 
renin‑angiotensin system inhibitors and SGLT2is (15,16).

The four SGLT2 inhibitors widely used in clinical treat‑
ment are Empagliflozin (EMPA), Dapagliflozin (DAPA), 
Canagliflozin (CANA) and Ertugliflozin; these have been 
approved by the US Food and Drug Administration and the 
European Medicines Agency (17). EMPA and DAPA are 
widely used for heart failure prevention and treatment (15,16). 
Existing studies have confirmed the lack of SGLT2 expression 
in cardiac tissue, thereby necessitating the investigation of 
the myocardial protective effect of SGLT2is (18). It has been 
suggested that SGLT2is exerts a diuretic effect via glomerular 
reabsorption, reducing blood volume and cardiac load and 
protecting the heart by reducing myocardial oxygen consump‑
tion. However, as this diuretic effect is dependent on blood 
glucose concentration, the cardiac benefit in non‑diabetic 
patients has not been determined (19). Therefore, the protective 
effect of SGLT2is on the myocardium may be exerted directly 
on the heart. Several studies have shown that the anti‑heart 
failure effect of SGLT2is may be mediated by inhibiting or 
reversing cardiac remodeling (20‑22).

Currently, the molecular mechanisms and signaling path‑
ways of SGLT2is in cardiac remodeling are being investigated. 
The present review provides a foundation and supports the 
investigation of novel mechanisms of cardiac remodeling 
and heart failure, as well as the development of novel drug 
targets based on the function and molecular mechanisms 
of SGLT2is‑mediated inhibition of pathological cardiac 
remodeling (Fig. 1).

2. Effects of SGLT2is on cardiac structure and function

Pathological cardiac remodeling is often manifested by changes 
in the morphology and size of the left ventricle. In addition, 
the left ventricular (LV) mass index (LVMI) and LV ejection 
fraction (LVEF) are used as evaluation indexes of cardiac struc‑
tural function (23,24). Studies have reported that SGLT2isThe 
improved cardiac function is mainly manifested as increased 
LVEF and decreased LV end‑diastolic volume (LVEDV), LV 
end‑systolic volume (LVESV), left atrial volume index (LAVI) 
and LVMI (22,25‑35). However, LV diastolic dysfunction 
(LVDD) often manifests as altered LV diastolic filling and is 
assessed based on the peak mitral E wave velocity to early 
mitral or septal annular tissue Doppler velocity ratio (E/e'), peak 
mitral E wave velocity to A wave velocity ratio and LAVI (36). 
SGLT2is also improved ejection fraction, LVEDV, LVESV and 
diastolic dysfunction in animal models of heart failure (37‑46).

Regarding cardiac structure, the LV mass (LVM), LV wall 
thickness and LV wall thickness‑to‑cavity radius can be used 
to determine the structural and morphological changes of 
the LV. Specifically, increased LVM has been considered a 
marker of clinical LV hypertrophy (47). Several studies have 
demonstrated that the cardiovascular benefits of SGLT2is 
may be achieved through reduced LVM, as it occurs without a 
decline in the volume, which reflects the decrease in ventric‑
ular wall thickness (26,29,30,48). However, the mechanisms 
of decreasing wall thickness are yet to be elucidated. In the 
present review, the effects of SGLT2is on cardiac structure 
and function in patients with cardiovascular disease and 
animal models were summarized (Tables I and II).

3. Effects of SGLT2is on myocardial hypertrophy in 
cardiomyocytes and cardiac fibrosis in cardiac fibroblasts

Pathological cardiac remodeling causes hypertrophy of 
cardiomyocytes and the proliferation of non‑cardiomyocytes 
in numerous cardiovascular diseases, including hypertension, 
diabetic cardiomyopathy, aortic stenosis, MI, pathological stim‑
ulation, cardiomyocyte hypertrophy and cardiac fibrosis (3). 
The characteristics of cardiac hypertrophy are abnormal size 
and function of myocardial cells, often manifested as increased 
ventricular mass, myocardial cell volume and expression of 
fetal genes, such as atrial natriuretic peptide, brain natriuretic 
peptide and β‑myosin heavy chain (49). Myocardial fibrosis, 
the excessive deposition of extracellular matrix, is closely 
associated with the severity of myocardial fibrosis. Type I 
collagen is the most abundant structural protein (50,51). 
Myocardial fibroblasts are the main cellular effectors that lead 
to cardiac fibrosis. Pathological stimuli can reduce the number 
of cardiomyocytes, which in turn stimulates inflammation. In 
order to compensate for the loss of cardiomyocytes, cardiac 
fibroblasts proliferate and differentiate into myofibroblasts, 
leading to scar formation (52).

Cardiac hypertrophy and cardiac fibrosis are the major 
pathological processes in cardiac remodeling and are closely 
related to the prognosis of cardiovascular diseases, making 
them the primary intervention targets for heart failure (53,54). 
Several studies have demonstrated that SGLT2is attenuates or 
inhibits cardiomyocyte hypertrophy and cardiac fibrosis by 
regulating multiple signaling pathways in numerous models, 
such as transverse aortic constriction (TAC), left coronary 
artery ligation MI and diabetes (39,40,55‑63).

4. Role of SGLT2is in cellular pathophysiological processes

Apoptosis. Apoptosis is a type of programmed cell death 
that serves a key role in embryonic development and tissue 
homeostasis (64). Apoptosis is mediated by death receptors, 
also known as extrinsic apoptotic pathways and mitochon‑
dria, also called intrinsic apoptotic pathways, both of which 
can activate cysteine‑dependent proteases (caspases) (65). 
Apoptosis serves a crucial role in the development of the heart 
and is associated with the occurrence and development of 
numerous cardiovascular diseases. Studies have reported that 
apoptosis is a pathological feature of MI and heart failure, and 
that the inhibition of apoptosis can prevent and treat post‑MI 
remodeling and heart failure (66).

Further studies have reported that SGLT2is reduces cardiac 
remodeling and improves cardiac function by inhibiting the 
apoptosis pathways. EMPA inhibits cardiomyocyte apoptosis 
and improves cardiac remodeling in early MI in non‑diabetic 
mice (67).

In mice with autoimmune myocarditis induced by 
α‑myosin‑heavy chain peptides, CANA markedly reduces 
the Bax/Bcl‑2 ratio and the level of cleaved caspase‑3 protein, 
followed by inhibition of apoptosis, which was reported to 
improve myocarditis (68). In cardiac I/R rats, DAPA‑induced 
pre‑ischemia upregulated the levels of anti‑apoptotic protein 
Bcl‑2 to protect cardiomyocytes from apoptosis, thereby 
alleviating cardiac mitochondrial dysfunction by reducing 
reactive oxygen species (ROS) production (43). DAPA 



MOLECULAR MEDICINE REPORTS  29:  73,  2024 3

mediates the cardioprotective effect in diabetic rats by acti‑
vating the phosphorylation of Akt, JAK2 and MAPK signaling 
cascades, increasing the erythropoietin levels and reducing 
apoptosis (69). DAPA also normalizes mitochondrial fission 
and reduces cardiomyocyte apoptosis by activating the phos‑
phoglycerate mutase member 5 (PGAM5)/dynamin‑related 
protein 1 (Drp1) signaling pathway, thereby improving cardiac 
remodeling after acute MI (70). However, this study did not 
use an agonist for the PGAM5/Drp1 pathway, so the relation‑
ship between DAPA and the PGAM5/Drp1 signaling pathway 
could not be assessed.

A recent study reported that in Doxorubicin‑induced cardiac 
dysfunction, DAPA decreased the cardiac expression of Bax 
and cleaved caspase‑3, but increased the expression of Bcl‑2, 
as well as signal transducer and activator of transcription 3 
(STAT3) that was subsequently inhibited by Doxorubicin (71). 
These findings indicate that DAPA activates the expression of 
sirtuin1 (SIRT1), which inhibits the protein kinase RNA‑like 
endoplasmic reticulum (ER) kinase (PERK)‑eukaryotic trans‑
lation initiation factor 2α (eIF2α)‑C/EBP homologous protein 
signaling pathway of the ER stress response in angiotensin 
II (Ang II)‑treated cardiomyocytes to reduce cardiomyocyte 
apoptosis and improve TAC‑induced cardiac remodeling 

in mice (72). Therefore, it may be suggested that SGLT2is 
improves damaged cardiac function by continual myocardial 
cell apoptosis.

Many of the mechanisms are effectuated through the mito‑
chondrial pathway. However, only a small number of studies 
have assessed the role of SGLT2is in myocardial cell apoptosis 
induced by the death receptor pathway. Hence, this mechanism 
should be evaluated to understand the anti‑apoptotic 
mechanism of SGLT2is.

Autophagy. Autophagy is a process that degrades and recir‑
culates damaged organelles, misfolded proteins and other 
macromolecules through lysosomal‑dependent pathways to 
maintain cell homeostasis and function (73). Previous studies 
have shown a crucial role of basal autophagy in cardiac develop‑
ment and in the maintenance of normal cardiac function (74‑77). 
However, insufficient or excessive autophagy can affect the 
development of pathological cardiac remodeling (78‑80). 
Furthermore, the activation of autophagy leads to the death of 
cardiomyocytes in MI and I/R injury and has been shown to 
have a dual effect in numerous research models, which may be 
related to the Beclin 1 (BECN1) or AMPK‑mammalian target 
of rapamycin (mTOR) pathways (81‑83). Several studies have 

Figure 1. Possible role and mechanism of SGLT2is in inhibiting pathological cardiac remodeling. SGLT2is, sodium‑glucose cotransporter type 2 inhibitors; 
JAK, Janus kinase; STAT, signal transducer and activator of transcription; SGK1, Serum/glucocorticoid regulated kinase 1; sGC, soluble guanylate cyclase 
enzyme; cGMP, cyclic guanosine monophosphate; PKG, cGMP‑dependent protein kinase.
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demonstrated that SGLT2is exerts cardioprotective effects 
through the activation or inhibition of autophagy.

In mouse models of coronary artery ligation‑induced 
diabetic and non‑diabetic MI, EMPA‑treated mice demon‑
strated a significant decrease in cardiomyocyte death due 
to excessive autophagy, which reduced autophagic flux by 
targeting the Na+/H+ exchanger 1 (NHE1) on cardiomyo‑
cytes (63). EMPA exerts myocardial protective effects through 
mitochondrial autophagy and the novel BECN1‑Toll‑like 
receptor (TLR)9‑SIRT3 axis (84). Furthermore, EMPA exerts 
cardioprotective effects in non‑diabetic mice with MI with acute 
hyperglycemia by suppressing beclin 1 (BCN1)‑dependent 
autophagy rather than targeting NHE1 in cardiomyocytes (85). 
Previous studies have demonstrated that BCN1 promotes the 
crosstalk between apoptosis and autophagy (86). In another 
study, EMPA was reported to inhibit ER stress‑induced 
autophagy by inhibiting the PERK/activating transcription 
factor 4/BCN1 signaling pathway, thereby alleviating myocar‑
dial I/R injury and cardiomyocyte apoptosis (87). Furthermore, 
overexpression of p62 and light chain 3II/I activates autophagy 
when EMPA is administered. It reduces cardiac lipid toxicity 
in Zucker diabetic fatty (ZDF) rats (88).

Likewise, DAPA represses cardiac remodeling and 
hypoxia‑induced apoptosis in heart failure through the activa‑
tion of autophagy via the AMPK/mTOR pathway (89). It also 
protects against myocardial I/R injury by limiting NLR family 
pyrin domain containing 3 (NLRP3) inflammatory vesicle 
activation and regulating autophagy (90). The dose of DAPA 
administered in this study was 40 mg/kg/day, which is 20X 
higher compared with the allometric‑adapted dose used in 
human clinical trials. It cannot be ruled out that the final result 
is related to high doses. SGLT2is exert cardioprotective effects 
through the activation and inhibition of autophagy via the inter‑
ference of varied pathological conditions and detection time. 
SGLT2is regulate autophagy through the AMPK pathway, ER 
stress and inflammasomes. These pathways also regulate the 
processes of cell apoptosis, inflammation and angiogenesis. 
However, the association between these pathological processes 
and autophagy or the precise mechanisms of SGLT2is are yet 
to be elucidated.

Ferroptosis. Ferroptosis is a form of programmed cell death 
different from cell apoptosis, cell necrosis and cell autophagy. It 
is mediated by iron‑dependent lipid peroxides and characterized 
by reduced intracellular glutathione (GSH) expression, reduced 
GSH peroxidase 4 (GPX4) activity and the accumulation of 
ROS and lipid peroxides (91‑93). Several studies have shown the 
role of ferroptosis in numerous cardiovascular diseases, such as 
cardiomyopathy, MI, myocardial I/R injury, atherosclerosis and 
heart failure (94‑98). Furthermore, SGLT2is exert cardiopro‑
tective effects through the ferroptosis pathway. In model rats, 
CANA can treat heart failure with preserved ejection fraction 
(HFpEF) by reducing iron intake and iron overload, reducing 
lipid peroxidation, increasing GSH production and inhibiting 
oxidative stress to regulate ferroptosis (99).

Furthermore, advanced glycation end‑products inhibit the 
expression of solute carrier family 7 member 11 and ferritin in 
diabetic cardiomyopathy and reduce GSH levels. This elevates 
lipid peroxidation levels and ferroptosis, which in turn trig‑
gers cardiac inflammation and cardiac remodeling, including 

Ta
bl

e 
I. 

C
on

tin
ue

d.

A
ut

ho
r(

s)
, y

ea
r 

C
lin

ic
al

 tr
ia

l n
um

be
r/t

yp
e 

Pa
tie

nt
 c

ha
ra

ct
er

is
tic

s 
SG

LT
2i

 
D

os
e 

an
d 

ac
tio

n 
tim

e 
D

ia
gn

os
tic

 m
et

ho
d 

O
ut

co
m

es
 

(R
ef

s.)

Pa
lm

ie
ro

 e
t a

l, 
A

 p
ilo

t p
ro

sp
ec

tiv
e 

st
ud

y.
 

Pa
tie

nt
s w

ith
 ty

pe
 2

 
EM

PA
 

10
 m

g,
 q

d;
 6

 m
on

th
s 

Ec
ho

ca
rd

io
gr

ap
hy

 
LV

EF
↑;

 L
V‑

G
LS

↑ 
(3

4)
20

23
 

G
LI

SC
A

R
 st

ud
y 

di
ab

et
es

 m
el

lit
us

 a
nd

 
 

re
du

ce
d 

ej
ec

tio
n 

fr
ac

tio
n

 
 

he
ar

t f
ai

lu
re

 (n
=3

1)
R

us
so

 e
t a

l, 
20

23
 

R
ea

l W
or

ld
 S

tu
dy

 
Pa

tie
nt

s w
ith

 ty
pe

 2
 

EM
PA

/ 
10

 m
g,

 q
d;

 6
 m

on
th

s 
Ec

ho
ca

rd
io

gr
ap

hy
 

LV
EF

↑;
 L

V‑
G

LS
↑ 

(3
5)

 
 

di
ab

et
es

 m
el

lit
us

 (n
=3

5)
 

D
A

PA

C
M

R
I, 

ca
rd

ia
c m

ag
ne

tic
 re

so
na

nc
e i

m
ag

in
g;

 q
d,

 q
ua

qu
e d

ie
; L

AV
I, 

le
ft 

at
ria

l v
ol

um
e i

nd
ex

; L
V

M
I, 

le
ft 

ve
nt

ric
ul

ar
 m

as
s i

nd
ex

; E
/e

', r
at

io
 p

ea
k 

ea
rly

 d
ia

st
ol

ic
 m

itr
al

 v
el

oc
ity

 to
 m

itr
al

 an
nu

lu
s e

ar
ly

 d
ia

st
ol

ic
 

ve
lo

ci
ty

; L
V

M
, l

ef
t v

en
tri

cu
la

r m
as

s;
 L

V
EF

, l
ef

t v
en

tri
cu

la
r e

je
ct

io
n 

fr
ac

tio
n;

 L
V

ED
V

I, 
le

ft 
ve

nt
ric

ul
ar

 e
nd

‑d
ia

st
ol

ic
 v

ol
um

e 
in

de
x;

 L
V

ES
V

I, 
le

ft 
ve

nt
ric

ul
ar

 e
nd

‑s
ys

to
lic

 v
ol

um
e 

in
de

x;
 L

V
ED

V,
 le

ft 
ve

nt
ric

ul
ar

 e
nd

‑d
ia

st
ol

ic
 v

ol
um

e;
 L

V
ES

V,
 le

ft 
ve

nt
ric

ul
ar

 e
nd

‑s
ys

to
lic

 v
ol

um
e;

 E
, e

ar
ly

 d
ia

st
ol

ic
 fi

lli
ng

 v
el

oc
ity

; N
T‑

pr
oB

N
P,

 N
‑te

rm
in

al
 p

ro
‑B

‑ty
pe

 n
at

riu
re

tic
 p

ep
tid

e;
 L

V‑
G

LS
, L

V
 g

lo
ba

l l
on

gi
tu

di
na

l 
st

ra
in

; S
G

LT
2i

s, 
so

di
um

‑g
lu

co
se

 c
ot

ra
ns

po
rte

r t
yp

e 
2 

in
hi

bi
to

rs
; E

M
PA

, E
m

pa
gl

ifl
oz

in
; D

A
PA

, D
ap

ag
lifl

oz
in

.



CHEN et al:  SGLT2 INHIBITORS IN PATHOLOGICAL CARDIAC REMODELING6
Ta

bl
e 

II
. E

ffe
ct

s o
f S

G
LT

2i
s o

n 
ca

rd
ia

c 
st

ru
ct

ur
e 

an
d 

fu
nc

tio
n 

in
 a

ni
m

al
 m

od
el

s.

A
ut

ho
r(

s)
, y

ea
r 

A
ni

m
al

 m
od

el
 

SG
LT

2i
 

D
os

e 
an

d 
ac

tio
n 

tim
e 

D
ia

gn
os

tic
 m

et
ho

d 
O

ut
co

m
e 

(R
ef

s.)

H
ab

ib
i e

t a
l, 

20
17

 
D

ia
be

tic
 m

od
el

s i
n 

fe
m

al
e 

EM
PA

 
10

 m
g/

kg
/d

ay
 o

ra
lly

 fo
r 

Ec
ho

ca
rd

io
gr

ap
hy

 
E/

e'↓
; 

(4
0)

 
ro

de
nt

s 
 

5 
w

ee
ks

Zh
an

g 
et

 a
l, 

20
19

 
Pi

g 
m

od
el

 o
f h

ea
rt 

fa
ilu

re
 

D
A

PA
 

O
ra

l a
dm

in
is

tra
tio

n 
of

 
Ec

ho
ca

rd
io

gr
ap

hy
 

LV
M

I↓
 

(4
1)

 
w

ith
 p

re
se

rv
ed

 e
je

ct
io

n 
 

10
 m

g/
da

y 
w

as
 st

ar
te

d
 

fr
ac

tio
n 

 
at

 th
e 

9t
h 

w
ee

k 
fr

om
 th

e
 

 
 

be
gi

nn
in

g 
of

 m
od

el
in

g
 

 
 

fo
r 9

 w
ee

ks
Le

e 
et

 a
l, 

20
19

 
H

yp
er

te
ns

iv
e 

he
ar

t f
ai

lu
re

 
EM

PA
 

20
 w

ee
ks

 a
fte

r m
od

el
in

g 
Ec

ho
ca

rd
io

gr
ap

hy
 

Ve
s↓

; V
ed
↓;

 
(4

2)
 

ra
ts

 
 

be
ga

n,
 1

2 
m

g/
kg

/d
ay

 w
as

 
 

+d
P 

/d
t↑

; ‑
dP

/d
t↓

 
 

 
ad

m
in

is
te

re
d 

fo
r 1

2 
w

ee
ks

Sa
nt

os
‑G

al
le

go
 e

t a
l, 

Pi
g 

m
od

el
 o

f n
on

‑d
ia

be
tic

 
EM

PA
 

A
fte

r m
od

el
in

g,
  

C
M

R
I a

nd
 

LV
ED

V
↓;

 L
V

ES
V
↓;

 
(3

8)
20

19
 

he
ar

t f
ai

lu
re

 
 

10
 m

g/
kg

/d
ay

 w
as

 
ec

ho
ca

rd
io

gr
ap

hy
 

LV
M
↓;

 L
V

EF
↑;

 
 

 
 

ad
m

in
is

te
re

d 
or

al
ly

 
 

G
LS

↑
 

 
 

fo
r 2

 m
on

th
s

Yu
ris

ta
 e

t a
l, 

20
19

 
R

at
 m

od
el

 o
f M

I i
nd

uc
ed

 
EM

PA
 

O
ra

l d
os

es
 o

f 3
0 

m
g/

kg
/d

ay
 

Ec
ho

ca
rd

io
gr

ap
hy

 
LV

EF
↑;

 L
V

M
↓ 

(3
9)

 
by

 c
or

on
ar

y 
ar

te
ry

 li
ga

tio
n 

 
w

er
e 

st
ar

te
d 

2 
da

ys
 b

ef
or

e
 

 
 

su
rg

er
y 

(e
ar

ly
 st

ag
e)

 o
r

 
 

 
2 

w
ee

ks
 a

fte
r s

ur
ge

ry
 

 
 

(la
te

 st
ag

e)
La

hn
w

on
g 

et
 a

l, 
A

cu
te

 m
yo

ca
rd

ia
l i

sc
he

m
ia

/ 
D

A
PA

 
1 

m
g/

kg
 w

as
 a

dm
in

is
te

re
d 

Ec
ho

ca
rd

io
gr

ap
hy

 
LV

EF
↑ 

(4
3)

20
20

 
re

pe
rf

us
io

n 
in

ju
ry

 ra
t m

od
el

 
 

be
fo

re
 is

ch
em

ia
, d

ur
in

g
 

 
 

is
ch

em
ia

 a
nd

 a
t t

he
 b

eg
in

ni
ng

 
 

 
of

 re
pe

rf
us

io
n

K
rä

ke
r e

t a
l, 

20
20

 
A

 n
ov

el
 ro

de
nt

 m
od

el
 o

f 
EM

PA
 

10
 m

g/
kg

/d
ay

 fo
r 4

 w
ee

ks
 

Ec
ho

ca
rd

io
gr

ap
hy

 
LV

EF
↑;

 L
V

FS
↑;

 
(4

4)
 

he
ar

t f
ai

lu
re

 in
du

ce
d 

by
 

 
af

te
r m

od
el

in
g 

 
G

LS
↑

 
co

m
bi

ne
d 

hy
pe

rte
ns

io
n

 
an

d 
di

ab
et

es
Sa

nt
os

‑G
al

le
go

 e
t a

l, 
A

 2
‑h

 b
al

lo
on

 o
cc

lu
si

on
 o

f 
EM

PA
 

10
 d

ay
s a

fte
r M

I, 
C

M
R

I a
nd

 
E/

e′
↓;

 E
D

PV
R
↓;

 
(4

5)
20

21
 

th
e 

pr
ox

im
al

 le
ft 

an
te

rio
r 

 
7 

m
g/

da
y 

fo
r 2

 m
on

th
s 

ec
ho

ca
rd

io
gr

ap
hy

 
LV

ED
P↓

 
de

sc
en

di
ng

 b
ra

nc
h 

in
du

ce
d

 
di

as
to

lic
 d

ys
fu

nc
tio

n 
in

 
no

n‑
di

ab
et

ic
 h

ea
rt 

fa
ilu

re
 

m
od

el
 p

ig
s



MOLECULAR MEDICINE REPORTS  29:  73,  2024 7

cardiomyocyte hypertrophy, pro‑fibrotic response, fibrosis and 
ultimately cardiac dysfunction (100). Another study reported 
that CANA may reduce ferroptosis and improve myocardial 
oxidative stress in diabetic cardiomyopathy mice by regulating 
iron metabolism and the systemic cystine‑glutamate antiporter 
(Xc‑)/GSH/GPX4 axis (101). However, the relationship and 
specific mechanism of CANA in regulating iron metabolism 
and the Xc‑/GSH/GPX4 axis require further evaluation. In 
addition, CANA has been reported to inhibit inflammation 
and ferroptosis through the activation of the AMPK pathway, 
thereby reducing lipotoxicity in cardiomyocytes (102).

Furthermore, EMPA prevents DNA oxidation and 
ferroptosis in trastuzumab‑induced C57BL/6J mice, which 
attenuates cardiotoxicity (103). Likewise, DAPA suppresses 
the MAPK signaling pathway in a model of myocardial I/R 
injury, reducing ferroptosis and exerting protective benefits on 
the heart (104).

Inflammation. Inflammation is a leading factor affecting cardiac 
remodeling and the progression of heart failure (105,106). 
Toll‑like receptors (TLRs), a family of transmembrane recep‑
tors, are recognized by danger‑associated molecular patterns 
(DAMPs) in MI and activate nuclear factor‑B (NF‑κB), 
which in turn activates a cascade of inflammatory mediators, 
including cell adhesion molecules, chemokines, and inflam‑
matory cytokines (107,108). Furthermore, the inflammasome, 
which are polymeric protein structures, form molecular plat‑
forms that are activated when cells are infected or stressed, 
stimulates the inflammatory response by activating several 
inflammatory cytokines, such as IL‑1 and IL‑18 (109). Thus, 
targeting specific cytokines, growth factors or inflammatory 
pathways could alleviate adverse cardiac remodeling.

Proinflammatory cytokines: TNF‑α, IL‑1 and IL‑6. The 
activation of multiple pro‑inflammatory cytokines, such as 
TNF‑α, IL‑1 and IL‑6, mediates cardiac remodeling through 
their effects on cardiomyocytes, fibroblasts and immune 
cells (110). These cytokines can induce cardiomyocyte hyper‑
trophy and apoptosis (111‑113). Pro‑inflammatory cytokines 
enhance the activity of matrix metalloproteinases and decrease 
the production of extracellular matrix (ECM) components 
in fibroblasts, which causes the ECM to degrade (114‑116). 
Thus, pro‑inflammatory cytokines serve a role in pathological 
cardiac remodeling. Furthermore, the pleiotropic anti‑inflam‑
matory factor IL‑10 decreases the expression of TNF‑α, IL‑1 
and IL‑6 to reduce cardiac inflammation (117,118).

Furthermore, SGLT2is downregulates pro‑inf lam‑
matory cytokines and improves cardiac function in 
cardiovascular diseases. DAPA decreased the levels of inflam‑
matory cytokines IL‑6 and TNF‑α in HFpEF pigs administered 
deoxycorticosterone acetate and Ang II to construct an ejection 
fraction‑preserving heart failure model (41). Likewise, EMPA 
decreased TNF‑α and IL‑6 levels in patients with HfpEF and 
ZDF obese rats, reduced inflammation and enhanced myocar‑
dial function (119). Furthermore, EMPA markedly decreased 
the level of TNF‑α and reduced myocardial fibrosis in hyper‑
tensive heart failure rats (42). DAPA decreased the levels of 
the pro‑inflammatory cytokines IL‑1, IL‑6 and TNF‑α in viral 
myocarditis mice infected with Coxsackievirus B3. DAPA 
facilitated macrophage polarization through STAT3‑related 
pathways to reduce myocarditis (120). Furthermore, DAPA 
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improves cardiac hypertrophy in streptozocin‑induced type 2 
diabetic rats by inhibiting the nuclear translocation of NF‑κB 
and reducing the expression of calpain‑1 in cardiomyocytes, 
decreasing IL‑6 and TNF‑α levels and upregulating IL‑10 
levels (58). In addition, DAPA regulates malondialdehyde, 
TNF‑α and ROS levels by blocking the C‑X3‑C motif chemo‑
kine ligand 1/receptor 1 axis and NF‑κB activity, thereby 
reducing lipopolysaccharide‑induced inflammation and oxida‑
tive stress (121). However, this study was performed in vitro 
using H9C2 cells and requires validation in patients.

NLRP3 inflammasome. The NLRP3 inflammasome acceler‑
ates the process of fibrosis by stimulating the production of 
proinflammatory cytokines IL‑1β and IL‑18 (122). Several 
factors, including MI, stress, obesity, diabetes and metabolic 
syndrome, activate the NLRP3 inflammasome and promote 
inflammation (123‑125). DAPA exerts anti‑inflammatory 
effects on the development of diabetic cardiomyopathy in 
type 2 diabetic mice by decreasing the expression of NLRP3 
inflammasome, IL‑1β, IL‑6 and TNF‑α (126,127). Likewise, 
EMPA inhibits cardiac fibrosis and inf lammation in 
non‑diabetic mice treated with Doxorubicin via the NLRP3 
and MyD88 signaling pathways and inhibition of NLRP3 
and NF‑κB inhibits the pro‑inflammatory cytokine storms 
in Doxorubicin‑treated cardiomyocytes (128). Furthermore, 
DAPA decreases p38‑dependent TLR4 expression to prevent 
NLRP3 activation, which then enhances cardiac function in 
Doxorubicin‑induced dilated cardiomyopathy (129). Finally, 
CANA reduces type 17 T‑helper cell infiltration and protects 
cardiomyocytes from apoptosis by inhibiting the NLRP3 
inflammasome pathway, which reduces myocarditis‑induced 
cardiac inflammation (68).

Macrophages also serve a role in the inflammatory response 
during cardiac remodeling (130). SGLT2is reduce cardiac fibrosis 
by regulating macrophage M2 polarization in infarcted rat hearts 
via the STAT3 signaling pathway (131). Inflammatory and NF‑κB 
signaling pathways are triggered in patients with arrhythmogenic 
cardiomyopathy (ACM) (132). DAPA reduces cardiac fibrosis 
and inflammation in ACM mice by reversing hypoxia‑inducible 
factor (HIF)‑2α signaling, inhibiting the NF‑κB signaling 
pathway (133). Accumulating evidence indicates that the role 
of SGLT2is in controlling inflammation is associated with fat 
reduction, which is efficacious in epicardial adipose tissue (134). 
Although the aforementioned studies have reported that SGLT2is 
serve a myocardial‑protective role through anti‑inflammatory 
mechanisms, another study on EMPA reported conflicting 
results; EMPA did not show any effect on the NLRP3 inflamma‑
some pathway or interleukin‑1β levels (135). The present review 
concluded that the effectiveness of SGLT2is in inhibiting inflam‑
mation is indeterminate, and more comprehensive information is 
essential to draw further conclusions.

Oxidative stress and mitochondrial dysfunction. Oxidative 
stress is a redox imbalance caused by the excessive production 
of ROS and/or an impaired antioxidant response (136). The 
primary ROS sources in the heart are mitochondria, NADPH 
oxidase (NOX), xanthine oxidase (XO) and uncoupled nitric 
oxide synthase (NOS) (137). A large number of heart cells can 
be affected by NOX via redox signal transduction. NOX regu‑
lates redox‑sensitive target proteins to limit the production of 

ROS (138). Under physiological circumstances, normal ROS 
signaling controls the growth and maturation of cardiomyo‑
cytes, the processing of cardiac calcium, excitatory systolic 
coupling and vascular tone (139). However, oxidative stress 
effectuated by a sharp rise in ROS causes cardiac hypertrophy, 
fibrosis, apoptosis and contractile failure under pathological 
circumstances (140). Furthermore, oxidative stress is consid‑
ered a key factor in the development of pathological cardiac 
remodeling and heart failure, as this disrupts mitochondrial 
activity by inducing oxidative damage to mitochondrial DNA, 
RNA, lipids and proteins. Oxidative stress also impairs myocar‑
dial cell systolic function by inducing mitochondria‑associated 
oxidative modifications of excitation‑contraction‑coupled core 
proteins (141). Several studies have shown that the cardiac 
benefits of SGLT2is are reduced oxidative stress in vivo and 
ameliorated mitochondrial dysfunction through multiple 
signaling pathways.

EMPA improves mitochondrial function by inhibiting 
mitochondrial fission in type 2 diabetic hearts, as demon‑
strated by an increase in the expression of mitochondrial 
fusion‑related proteins mitofusin‑1 and optic atrophy 1 and the 
inhibition of DRP1 expression in type 2 diabetic db/db mice 
and H9C2 cardiomyocytes. In the present study, oxidative 
stress was reduced by increasing the expression of nuclear 
factor erythroid 2‑related factor 2 (Nrf2) and its downstream 
genetic targets (59).

DAPA protects cardiomyocytes from hypergly‑
cemia‑induced damage by inhibiting NOX‑mediated oxidative 
stress (142), whereas treatment with EMPA reduces LV hyper‑
trophy and fibrosis after TAC and MI in non‑diabetic mouse 
models and Sprague Dawley (SD) rats with coronary artery 
ligation‑induced oxidative stress. Hypertrophy and fibrosis 
were improved by upregulating mitochondrial biogenesis, 
enhancing mitochondrial oxidative phosphorylation, reducing 
ROS production, attenuating apoptosis and increasing 
autophagy (39,143). EMPA treatment in diet‑induced obese 
mice reduced cardiac fat accumulation and mitochondrial 
injury, improved myocardial hypertrophy and cardiac fibrosis 
and reduced cardiac dysfunction. This effect may be reduced 
by Sestrin2‑mediated AMPK‑mTOR signaling and Nrf2/heme 
oxygenase 1‑mediated oxidative stress responses (144). In 
addition, EMPA inhibited high‑fructose diet‑induced cardiac 
dysfunction in type 2 diabetic SD rats by attenuating mitochon‑
dria‑driven oxidative stress (145). DAPA reduces oxidative 
stress, mitochondrial dysfunction, fibrosis, hypertrophy and 
inflammation in Doxorubicin‑stimulated rats via inhibition of 
PI3K/AKT/Nrf2 signaling (61). This study used only male and 
no female animals, while females may be more sensitive to 
Doxorubicin and mimic the clinical state.

Energy metabolism. Modifications in myocardial energy 
metabolism contribute to the development of pathological 
cardiac remodeling (146). It is often manifested by a switch 
of the heart back to the fetal genetic program and a shift 
in preference of metabolic substrate from fatty acids to 
glucose (147,148). Cardiac remodeling is associated with 
reduced lipid oxidation capacity and increased glucose 
dependence (149). Although the conversion of myocardial 
metabolic substrates from fatty acids to glucose lowers oxygen 
consumption, it can be detrimental to cardiac performance 
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and aggravate heart failure because of insufficient energy 
production (150,151). Furthermore, preserving fatty acid 
oxidation during stress overload prevents the effects of glucose 
on cardiac remodeling (152,153). Thus, promoting the use of 
fatty acids and other metabolic substrates to regulate energy 
metabolism may be a promising therapeutic strategy for heart 
failure and to improve cardiac remodeling (154).

EMPA reduces excessive glycolysis in TAC‑induced 
cardiac overload mice by binding to glucose transporter 
(GLUT) proteins, such as GLUT1 and GLUT4, which 
increases the expression of CD36, restores fatty acid uptake 
and improves mitochondrial oxidative phosphorylation. The 
reduced glucose uptake may also lead to an impaired pentose 
phosphate pathway, which in turn activates AMP‑activated 
protein kinases and blocks mTOR complex 1 (mTORC1) to 
reduce cardiac hypertrophy (57).

Contrastingly, EMPA has been shown to improve diabetic 
cardiac remodeling in diabetic cardiomyopathic rats by 
reducing fatty acid and increasing glucose metabolism (155), 
although this may be related to increased fatty acids in diabetic 
heart disease, which leads to lipid toxicity and insulin resis‑
tance (146,156), hence the contrasting results reported. EMPA 
significantly elevated cardiac metabolism and cardiac ATP 
production in coronary artery‑ligated non‑diabetic male SD 
rats by increasing ketone body bioavailability and myocardial 
oxidation of glucose and fatty acids (39). However, this study 
did not provide direct evidence that EMPA‑treated hearts were 
associated with increased ketone body oxidation, nor did it 
quantify the relationship between ketone body oxidation and 
increased myocardial ATP levels.

Similarly, EMPA altered the myocardial fuel metabolic 
substrates from glucose to ketone bodies, free fatty acids and 
branched‑chain amino acids in non‑diabetic pigs induced 
by 2 h of proximal balloon occlusion of the left anterior 
descending branch. This improved myocardial energy, 
enhanced LV systolic function and improved unfavorable LV 
remodeling (38).

Angiogenesis. Angiogenesis is the physiological and pathological 
process of forming new microvessels from pre‑existing capil‑
laries in response to hypoxia. Angiogenesis involves endothelial 
cell proliferation, migration, differentiation, tube formation and 
regulation of angiogenic factors (157‑159). The development 
of cardiac remodeling is significantly influenced by microvas‑
cular density (157,160). Several studies have demonstrated that 
promoting angiogenesis increases the density of microvessels 
and arteriolar, thus reducing cardiac remodeling (161‑165).

Previous studies have shown that EMPA promotes 
myocardial microcirculatory perfusion and cardiac function 
by reducing AMPK‑mediated mitochondrial fission and 
oxidative stress and stabilizing F‑actin (166). Studies in a 
mouse model of diabetes‑related hindlimb ischemia found 
that DAPA promotes vascular endothelial cell proliferation 
and migration through the prolyl hydroxylase domain protein 
2/HIF‑1α axis, the secretion of multiple angiogenic factors, 
the formation of neovascularization and increases in blood 
perfusion (167). EMPA improves systolic dysfunction during 
LV pressure overload in mice by activating the AKT/endo‑
thelial NOS (eNOS)/NO pathway to prevent endothelial 
apoptosis and maintain capillarization (168). In the event of 

myocardial I/R injury in non‑diabetic mice, EMPA inhibits 
the DNA‑dependent protein kinase catalytic subunit/fission 
1 protein/mitochondrial fission pathway, protecting the 
microvascular system (169). However, the microvascular 
function in vivo is difficult to evaluate. In this study, only 
electron microscopy was used to observe the structural 
changes of microvessels in mice treated with EMPA, which 
is insufficient. However, coronary blood flow reserve can also 
be used. Another study demonstrated that DAPA reduces 
cardiac endothelial dysfunction and microvascular injury by 
inhibition of the XO/sarco(endo) plasmic reticulum calcium 
ATPase 2/calmodulin‑dependent kinase II/coffilin pathway 
in I/R injury mice (170). EMPA also improves endothelial 
cell dysfunction induced by a mutant aldehyde dehydroge‑
nase 2 unable to metabolize acetaldehyde by inhibiting NHE1 
and activating the AKT kinase and eNOS pathways (171). 
EMPA attenuates cardiac microvascular I/R injury through 
the activation of the AMP‑activated protein kinase α1 
(AMPKα1)/UNC‑52‑like kinase 1/FUN14 domain containing 
1/mitophagy pathway (172).

5. Molecular mechanisms of SGLT2is in pathological 
cardiac remodeling

TGF‑β1/Smad2/3 pathway. The development of cardiac 
fibrosis is regulated by members of the TGF‑β family, 
particularly TGF‑β1, which activates Smad‑dependent or 
non‑Smad‑mediated signaling pathways (173). TGF‑β1 is a key 
cytokine mediating the conversion of cardiac fibroblasts into 
myofibroblasts that is regulated by numerous substances (174). 
Previous studies have shown that EMPA significantly decreases 
TGF‑β1/Smad2 levels and upregulates the expression of the 
negative feedback regulator Smad7 to alleviate cardiac oxida‑
tive stress and fibrosis in diabetic mice (175). Furthermore, 
the antifibrotic activity of Smad7 on TGF‑β and epidermal 
growth factor receptor 2 reduces myofibroblast activation 
and the production of structural and matrix proteins (176). 
Early administration of EMPA during MI reduces myocardial 
fibrosis and inhibits the TGF‑1/Smad3 fibrotic pathway (177). 
This study explored the effects of EMPA on early cardiac 
physiology and fibrosis after myocardial infarction. Only 
samples taken after 4 weeks of administration were exam‑
ined, and earlier samples were not evaluated, so the results 
may differ. DAPA reduces TGF‑β1 levels and increases the 
expression of the negative feedback regulator Smad7 in Ang 
II‑induced cardiac remodeling (178).

Reportedly, the activation of AMPKα inhibits the 
TGF‑β/Smad pathway (179,180). DAPA protects against 
diabetic cardiomyopathy and myocardial fibrosis by inhibiting 
endothelial‑interstitial transformation and fibroblast activa‑
tion in the AMPKα/TGF‑β/Smad signaling pathway (181). 
Furthermore, DAPA reduces myocardial fibrosis by inhibiting 
TGF‑β1/Smad signaling pathways in normoglycemic chronic 
heart failure rabbits (182).

MAPK pathway. MAPK is a class of highly conserved 
serine/threonine protein kinases regulated by a cascade of 
tertiary phosphorylation activation (183,184). MAPK is divided 
into four subgroups: Extracellular signal‑regulated kinase 1/2 
(ERK1/2), c‑Jun N‑terminal kinase (JNK), p38 MAPK and 
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ERK5 (185,186). Under pathological conditions, the MAPK 
signaling pathway is activated by numerous extracellular 
stimulation signals and is essential for cell proliferation, 
differentiation, apoptosis and stress response (184,187). These 
findings suggested that the MAPK signaling pathway regulates 
cardiac remodeling due to multiple pathologies (188‑191).

Furthermore, TAC activated ERK1/2, p38 and JNK in mice 
and treatment with DAPA inhibited the expression of JNK 
and p38 to reduce cardiac remodeling (56). Likewise, DAPA 
attenuated palmitic acid‑induced cell hypertrophy and apoptosis 
and improved cardiac dysfunction and remodeling in high‑fat 
diet‑induced obese mice. This protective effect both in vivo and 
in vitro is mediated by the NHE1/MAPK signaling pathway (192), 
and whether DAPA exerts cardio‑protective effects through NHE1 
requires further evaluation. Furthermore, this suggests that the 
protective effect of EMPA on the heart may be mediated through 
stimulation of the ERK1/2 signaling pathway in I/R injury (69).

mTOR and Akt. mTOR, a class of atypical serine/threonine 
protein kinases, is a member of the phosphatidylinositol 
3‑kinase (PI3K)‑related protein kinase family. The interaction 
of mTOR with different proteins forms two macromolecular 
complexes with different structures and functions, mTORC1 
and mTORC2 (193). mTOR also integrates multiple extracel‑
lular signals, such as nutrient levels, energy and growth factors, 
and serves a role in cell growth, proliferation, survival, protein 
synthesis, autophagy and metabolism (194,195). Several studies 
have shown its crucial role in the physiological and patho‑
logical processes of the heart (196‑201). Furthermore, the Akt 

and AMPK pathways are regulators of mTORC1, with AMPK 
negatively regulating the mTOR signaling pathway (202).

Another study reported that Ertugliflozin reduces LV 
fibrosis in mice with cardiac hypertrophy by activating the 
AMPK/mTOR pathway and inhibiting its downstream targets 
p70S6K and 4E‑BP1 (203). This target mediates translation 
to promote mTORC1 synthesis and causes mTORC1‑induced 
myocardial hypertrophy (204). Likewise, EMPA modulates 
autophagy in cardiomyocytes to ameliorate sunitinib‑induced 
cardiac dysfunction, an effect mediated by the activation of 
sunitinib‑inhibited AMPK and reducing Sunitinib‑activated 
mTOR levels (37). AMPK/mTOR is one of the main pathways 
regulating autophagy, which can be regulated by direct phos‑
phorylation of UNC‑51‑like kinases 1 (205). Furthermore, 
EMPA improves obesity‑related cardiac dysfunction by 
increasing the AMPK level and endothelial nitric oxide 
synthase phosphorylation, and inhibiting Akt and mTOR phos‑
phorylation (144). Previous research has demonstrated that the 
heart can be protected by inhibiting the PI3K/AKT/mTOR 
pathway (206). CANA alleviates cardiomyocyte lipotoxicity 
in diabetic cardiomyopathy mouse models by blocking 
the mTOR/HIF‑1 pathway (207). Likewise, CANA is an 
SGLT1i/SGLT2is and its impact on the mTOR signaling 
pathway should be excluded from SGLT1 interference.

Other molecular signaling pathways. Serum and glucocorti‑
coid‑induced protein kinase 1 (SGK1) are the main mediators of 
cardiac remodeling through the activation of epithelial sodium channel 
(ENaC) proteins responsible for promoting fibrosis and upregulating 

Figure 2. Role of SGLT2is in inhibiting pathological cardiac remodeling. SGLT2is, sodium‑glucose cotransporter type 2 inhibitors; AMPK, AMP‑activated 
protein kinase; NHE1, Na+/H+ exchanger 1; SIRT1, sirtuin‑1; XO, xanthine oxidase; SERCA2, sarco(endo)plasmic reticulum calcium‑ATPase 2; CaMKII, 
calmodulin‑dependent kinase II; HIF1‑α, hypoxia‑inducible factor 1‑α; SGK1, serum and glucocorticoid‑induced protein kinase 1.
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NHE1 activity (208,209). DAPA attenuates LVDD and myocardial 
fibrosis by modulating SGK1 signaling and ENaC protein (210). 
Due to the use of pigs in this study, the sample size was small and 
the results had statistical limitations. The JAK/STAT signaling 
pathway is a promoter of fibroblast activation and ischemic‑induced 
cardiac dysfunction (211,212). CANA attenuates fibrosis by reducing 
JAK/STAT signaling, activating AMPK and through antioxidant 
signaling (213). Characteristics of diabetic cardiomyopathy include 
decreased cyclic guanosine monophosphate (cGMP) levels and 
altered soluble guanylate cyclase enzyme (sGC)‑cGMP‑ dependent 
protein kinase (PKG) signaling, which regulate systolic and diastolic 
dysfunction under diabetic conditions (214,215). Furthermore, EMPA 
improves cardiac function by preventing oxidative stress‑induced 
injury via the sGC/cGMP/PKG pathway (216).

6. Conclusion

The present review provided a comprehensive summary of the 
molecular mechanisms through which SGLT2is attenuate patho‑
logical cardiac remodeling in animal and in vitro cellular models. 
The molecular pathways of SGLT2is in cardiac remodeling in 
terms of cardiac hypertrophy, cardiac fibrosis, inflammation, 

apoptosis, autophagy, ferroptosis, oxidative stress and energy 
metabolism, were summarized in Fig. 2. Thus, which supports 
the potential use of SGLT2i as a therapeutic which can inhibit 
numerous mechanisms of cardiac remodeling, such as MI, I/R 
and diabetic cardiomyopathy. SGLT2is are directly or indirectly 
involved in regulating molecular pathways of cardiac remodeling. 
Of note, the interaction between inflammation and oxidative 
stress increases the production of ROS and pro‑inflammatory 
mediators, and SGLT2is inhibit this interaction to regulate cardiac 
remodeling (Fig. 3). Based on this summary, it is speculated that 
SGLT2is exert inhibitory effects on cardiac remodeling (Fig. 4).

To date, the effect of SGLT2is on cardiac remodeling has 
been evaluated by several approaches, but studies on how it 
functions in the heart require further evaluation. In addition, 
the epigenetic mechanisms of SGLT2is in cardiac remod‑
eling have not been reported. In recent years, the impact of 
epigenetics on disease development has received significant 
attention and studies on cardiac diseases suggest that the 
epigenetic mechanisms of SGLT2is require further assessment 
in future studies.

Regarding diabetic and non‑diabetic pathological cardiac 
remodeling, few studies have simultaneously compared 

Figure 3. Indirect effect of SGLT2is on pathological cardiac remodeling by inhibiting the crosstalk between inflammation and oxidative stress. SGLT2is, 
sodium‑glucose cotransporter type 2 inhibitors; ROS, reactive oxygen species; IκB, inhibitor of NF‑κB.
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whether both occur through the same mechanism. SGLT2is 
have been clinically approved for use in non‑diabetic 
heart failure, while in diabetic heart disease, their role 
may be influenced by SGLT2 targets. Thus, exploring the 
mechanism of action of SGLT2is in non‑diabetic cardiac 
remodeling may provide a basis for clinical application in 
the heart.

The present review emphasizes that SGLT2is are not only 
effective in controlling blood sugar in diabetes but can also miti‑
gate heart damage, suggesting their dual use in managing both 
conditions.
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