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Abstract. Vasculogenic mimicry (VM), a new pattern of tumor 
microcirculation, is important for the growth and progression 
of tumors. Epithelial‑mesenchymal transition (EMT) is pivotal 
in malignant tumor progression and VM formation. With 
increasing knowledge of cancer stem cell (CSC) phenotypes 
and functions, increasing evidence suggests that CSCs are 
involved in VM formation. Recent studies have indicated that 
EMT is relevant to the acquisition and maintenance of stem 
cell‑like characteristics. Thus, in this review we discuss the 
correlation between CSCs, EMT and VM formation.
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1. Introduction

For many years, angiogenesis via the sprouting of new vessels 
from existing ones was considered to be the exclusive method 
of tumor vascularization (1), and anti‑angiogenesis therapies 
were applied as a promising method to ‘starve’ tumors. 

However, with the administration of angiogenesis inhibitors 
primarily targeting endothelial cells, it was identified that the 
effect of these types of drugs was limited. This indicated that 
there may be other supplementary blood supply patterns used 
to nourish tumors. In 1999, Maniotis et al (2) first reported 
that highly aggressive and metastatic melanoma cells are able 
to form highly patterned vascular channels lined externally 
by tumor cells, without the existence of endothelial cells. This 
process was termed vasculogenic mimicry (VM), which is 
independent of angiogenesis, and is composed of tumor cells 
and a basement membrane. VM was categorized into two 
distinctive types: the patterned matrix type (2) and the tubular 
type (3). Blood plasma and red blood cells are able to flow in 
the nonendothelial cell‑lined vessel‑like structures (2,4), and 
a VM‑angiogenesis junction in the central area of the inflam-
matory breast cancer (IBC) xenografts has been observed (5). 
This evidence suggests that VM in the tumor mass is connected 
with host vessels for blood supply and is part of the functional 
microcirculation. 

Subsequently, VM has been observed in numerous types 
of aggressive tumors, such as colorectal cancer (6), head and 
neck squamous cell carcinoma (HNSCC)  (7‑9), glioblas-
toma (3,10), breast cancer (11,12), ovarian carcinoma (13,14), 
astrocytoma (15) and Ewing sarcoma (4). Increasing evidence 
has suggested that patients with tumors undergoing VM have 
a worse prognosis and VM may be used as an independent 
predictor of prognosis  (16‑18). Lin et  al  (9) analyzed the 
clinical and pathological significance of VM in 168 cases of 
laryngeal squamous cell carcinoma (LSCC) and found that 
VM occurred in LSCC, and LSCC with VM had increased 
potential for invasion and metastasis. Upile et al (8) showed 
that HN2b metastatic HNSCC cells lines have higher VM 
formation properties when compared with the HN2a primary 
tumor cell line, and endothelial growth factor antibodies 
discouraged VM formation.

Additionally, certain studies demonstrated that administra-
tion of angiogenesis inhibitors did not suppress the formation 
of VM, and even induced extracellular matrix‑rich tubular 
network formation in vitro (19). Conceivably, VM may play a 
pivotal role as an alternative pathway for blood supply when 
the pattern of angiogenesis is inhibited. 

Epithelial‑mesenchymal transition (EMT) is a revers-
ible dedifferentiation process that converts epithelial cancer 
cells into dedifferentiated cells with additional mesenchymal 
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features. This process is characterized by the loss of epithelial 
traits and the acquisition of mesenchymal phenotypes (20‑23). 
Activation of EMT triggers tumor cell invasion and metas-
tasis to distant organs. Recently, EMT has been reported to 
contribute to the formation of VM, and the upregulation of 
EMT‑associated transcription factors has been demonstrated 
in VM‑forming tumor cells (24,25).

Normal tissues and tumors contain a small subset of cells, 
known as stem cells, with the capacity for self‑renewal and 
the multipotency to differentiate into diverse committed 
lineages (26,27). Tumors are composed of diverse types of 
cells (28) and cancer stem cells (CSCs) are at the top of the 
hierarchical pyramid (26,29‑31). Mounting evidence demon-
strates that CSCs have the capacity for differentiation along 
tumor and endothelial lineages (32,33), as well as vascular 
smooth muscle‑like cells (3). VM‑engaging tumor cells show 
a significant expression of both endothelial and tumor pheno-
types  (14,34), and thus VM may represent the incomplete 
progress of CSC differentiation into endothelial lineages. 
Additionally, it has been observed that epithelial cancer cells 
may be endowed with the self‑renewal stem cell phenotype via 
EMT (35,36). Therefore, in this review, we discuss the correla-
tion between CSCs, EMT and VM formation.

2. Cancer stem cell (CSC) involvement in vasculogenic 
mimicry (VM) formation

CSCs, as defined by the American Association of Cancer 
Research, are a small subset of cells with the capability 
of self‑renewal and differentiation into the heterogeneous 
lineages that constitute the tumor mass (26). In reality, this is 
only a functional definition. Due to the lack of specific markers, 
the so‑called ‘CSCs’ obtained in almost all experiments are 
actually a mixture of real CSCs and progenitor cells. In that 
sense, it is also reasonable to call these cells tumor stem‑like 
cells. Although there is controversy regarding the accurate 
definition of CSCs, increasing evidence supports the existence 
of CSCs and the validity of the CSC hypothesis (37). CSCs 
were first demonstrated in human acute myeloid leukemia 
(AML) when investigators found that the ability to initiate 
tumors by transplantation of AML cells into NOD/SCID mice 
was limited to a CD34+/CD38‑ subpopulation of leukemic 
cells (38). CSCs have been further observed in several solid 
tumors, such as breast (28), brain (39,40), melanoma (41,42), 
prostate (43), ovarian (44,45) and pancreatic cancers (46), as 
well as HNSCC (47‑53). In addition to the capability of tumor 
initiation, CSCs have also been implicated in tumor inva-
sion and metastasis. In breast cancer, the CSCs sorted by a 
number of markers have a higher capability of invasion and 
metastasis. Balic et al (54) found that the majority of early 
disseminated cancer cells in bone marrow have a breast CSC 
phenotype (CD44+/CD24‑). From a retrospective study of 
109 patients with IBC, the patient prognosis and metastasis 
trends showed a significant correlation with aldehyde dehy-
drogenase 1 (ALDH1) expression, a specific marker of CSCs. 
Both in vitro and xenograft assays showed that invasion and 
metastasis in IBC are mediated by a cellular component that 
exhibits ALDH activity (55). In HNSCC cell lines, based on 
an invasive assay in vitro and injection of tumor cells into the 
tail vein of mice, Davis et al (56) found that CD44+ cells have 

an increased ability to invade through the basement membrane 
and to form lung metastases. In the peripheral blood of 
patients with HNSCC, a greater number of CD44+ tumor 
cells were also observed compared with that of the healthy 
control group  (57). Song et al  (58) demonstrated that side 
population (SP) cells in HNSCC were highly invasive, and the 
highly metastatic M3a2 and M4e HNSCC cell lines contained 
a greater number of SP cells in comparison with the 686LN 
parental HNSCC cell line that has low metastatic potential. It 
was deduced that SP cells may be a major driving force in head 
and neck tumor formation and metastasis. Goldie et al (59) 
reported that upregulation of FRMD4A, a human epidermal 
stem cell marker, occurs in primary human HNSCCs, where 
high expression levels correlate with increased risk of relapse. 
Additionally, FRMD4A silencing was shown to decrease the 
growth and metastasis of human squamous cell carcinoma 
xenografts in the skin and tongue.

Furthermore, Hermann et al (46) found that CD133+/CXCR4+ 
CSCs of pancreatic tumors are crucial in tumor metastasis and 
CD133+/CXCR4‑ CSCs are associated with tumorigenesis. On 
the basis of this finding, CSCs are divided into two categories: 
Stationary CSCs, which are involved in tumorigenesis, and 
invasive CSCs, which are associated with the behaviors of 
invasion and metastasis. Moreover, resistance to conventional 
treatment has been considered as a problem in cancer therapy. 
At present, the exact mechanism of resistance is yet to be 
completely understood. Considering the slow proliferation 
rate (60), the higher resistance to the hypoxic environment (61) 
and cell death (62), and the role of the ABC family (such as 
ABCB1, ABCG2 and ABCB5) in pumping drugs out of the 
cell (63), CSCs are analogous to a reservoir of cells that survive 
the initial treatment and are responsible for tumor recurrence.

With increasing knowledge of CSC phenotypes and func-
tions, the evidence suggests that CSCs are involved in VM 
formation. In human breast cancer, by injecting human breast 
CSCs into SCID mice, Bussolati et al (64) found that a number 
of the intratumor vessels were of human origin, indicating the 
involvement of breast CSCs in vessel formation. In melanoma, 
there is evidence showing that the VM‑forming tumor cells 
express phenotypes that are usually expressed in other cell 
types, such as endothelial or epithelial cells (11). This indicated 
that these cells may revert to an undifferentiated, stem‑like 
phenotype  (65). Recently, in glioblastoma, Ricci‑Vitiani 
et al (32) and Wang et al (33) found that CD133+ glioblastoma 
stem‑like cells are pluripotent and capable of differentiation 
along tumor and endothelial lineages (33,66), as well as mixed 
endothelial cell lineages, with co‑expression of the tumor 
phenotype (32). On the analysis of tumor xenografts obtained 
by orthotopic and subcutaneous injection of human glioblas-
toma in immunocompromised mice, the authors observed that 
the vessels in the transplanted tumor were primarily composed 
of tumor cells with an aberrant endothelial phenotype. The 
findings indicate that these cells are derived from CSCs, 
and thus VM may represent an incomplete differentiation of 
cancer stem‑like cells towards the endothelial lineage (Fig. 1). 
It has been reported that CD133+ and ABCB5+ subpopulations 
are colocalized in melanomas in perivascular niches that 
contain vascular endothelial (VE)‑cadherin+ melanoma cells, 
which have the ability to form VM (67). Frank et al (68) found 
that vascular endothelial growth factor 1 (VEGF‑1) signaling 
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plays an important role in this process and knockdown of 
VEGF receptor 1 blocked the development of ABCB5+ VM 
morphology. In oral squamous cell carcinoma, Dang and 
Ramos (69) observed that TRA‑1‑60+/β6+ tumor cells with 
CSC attributes are able to form vascular‑like structures in vivo. 
However, based on the observation of the melanoma xenograft 
model, Zhang et al  (70) found that VM was the dominant 
blood supply pattern in the early stage of tumor growth. 
During tumor growth progression, the level of VM decreased 
and the number of endothelial‑dependent vessels increased. 
The authors proposed a three‑stage blood supply pattern 
consisting of VM, mosaic vessels and endothelium‑dependent 
vessels. This inverse change tendency between VM and 
endothelium‑dependent vessels may be due to the persistent 
differentiation of CSCs to endothelial cells without tumor cell 
phenotypes. 

3. Epithelial‑mesenchymal transition (EMT) involvement 
in VM

EMT is a crucial process in cancer progression, providing 
cancer cells with the ability to escape from the primary site, 
invade stromal tissues and migrate to distant regions of the 
body. Epithelial cells undergoing EMT are characterized by 
downregulation of epithelial makers (such as cytokeratin), 
loss of cell polarity and intercellular adhesion molecules (for 
instance E‑cadherin and occludin), which is concomitant with 
upregulation of mesenchymal markers (vimentin, N‑cadherin 
and fibronectin) and acquisition of fibroblast‑like morphology 
with cytoskeleton reorganization  (20,22,71). The loss of 
E‑cadherin and the gain of N‑cadherin expression are known 
as cadherin switching, a major hallmark of EMT. Cadherin 
switching was observed in 30 out of 80 HNSCC cases and 
was closely correlated with histological differentiation, pattern 
of invasion and lymph node metastasis in HNSCC cases (72). 
According to analysis of HNSCC specimens and cell lines, 
Mandal et al (73) demonstrated a close correlation between 
EMT and aggressive tumor features, including penetrating 

invasive fronts, high‑grade sarcomatoid transformation and 
lymph node metastasis. A variety of transcription factors 
such as Snai1 (Snail1) (74‑76), Slug (Snail2) (77), Twist (78), 
SOX4 (79) and ZEB (80), and several signaling pathways, 
involving TGF‑β, Wnt, Notch and Hedgehog, have been 
reported to play significant roles in the process of EMT (81‑83). 
Snail and Slug repress E‑cadherin transcription to degrade 
cell‑to‑cell adhesion by binding the E‑box in the E‑cadherin 
promoter, and inducing tumor cell migration (74,79,84). The 
transcription factor Twist, a master regulator of embryonic 
morphogenesis, contributes to metastasis of mammary 
carcinoma by promoting an EMT (78). Twist1 induced inva-
sion and metastasis of hepatocellular carcinoma (HCC) via 
downregulation of E‑cadherin and increased activity of 
matrix metalloproteinase (MMP), specifically MMP2 and 
MMP9 (85). In a spontaneous skin squamous cell carcinoma 
mouse model, Tsai et al (86) demonstrated that activation of 
Twist1 is sufficient to promote carcinoma cells to undergo 
EMT and disseminate into blood circulation. Aigner et al (87) 
identified that the transcription factor ZEB1 is able to induce 
the repression of certain polarity genes (Crumbs3, PATJ 
and HUGL2) to improve tumor cell invasion. Moreover, by 
virtue of repression of the miR‑200 and miR‑34a families, 
respectively, ZEB1 contributes to metastasis by maintenance 
of the dedifferentiation status and remodeling of cytoskeletal 
actin (88,89). Furthermore, there is evidence to suggest that 
these transcription factors function together, but not indepen-
dently, in order to induce EMT (84,90).

Recently, evidence has shown that EMT is involved in 
the process of VM formation. In VM‑positive colorectal 
carcinoma samples, Liu et al (24) found that expression of 
ZEB1 was upregulated. Downregulation of E‑cadherin and 
upregulation of vimentin in the ZEB1‑positive group were 
detected. Knockdown of ZEB1 resulted in a decrease in VM 
and the restoration of certain epithelial phenotypes, such as 
VE‑cadherin and Flk‑1. In HCC, the inhibition of Twist1 
expression by the short hairpin RNA markedly reduced VM 
formation (25). Furthermore, the Bcl‑2/Twist1 complex facili-
tates the nuclear transport of Twist1 and leads to transcriptional 
activation of a wide range of genes that may increase the tumor 
cell plasticity, metastasis and VM formation of hepatocellular 
carcinoma (91). Lirdprapamongkol et al (92) have reported 
that the poorly‑differentiated HCC cell line, SK‑Hep‑1, with 
mesenchymal features (high invasiveness and expressing 
vimentin, with no E‑cadherin) could form VM in vitro, while 
the well‑differentiated cell line HepG2 did not form VM. 
These findings indicated that EMT is involved in VM forma-
tion. 

4. CSCs are implicated in VM formation by the induction 
of EMT

Researchers have been engaged in discovering the origin 
of CSCs for a number of years. It is widely accepted that 
tumor formation is due to the multistep mutation of genomes. 
Considering the longer lifespan of stem cells, normal stem cells 
suffer from the accumulation of mutations over time. Thus, it 
is hypothesized that CSCs derive from normal stem cells with 
genetic mutations, and this has been demonstrated by inde-
pendent investigators (93,94). In addition to this mechanism, 

Figure 1. Schematic diagram representing the VM formation involved in 
CSCs and EMT. VM, vasculogenic mimicry; CSC, cancer stem cell; EMT, 
epithelial‑mesenchymal transition.
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mounting data suggest that differentiated tumor cells may 
reacquire stemness (95), particularly via EMT induction (35). 
The endowment of stem cell traits by EMT provided another 
source for the origin of CSCs. Biddle et al (96) classified the 
CSCs into two types, namely, non‑EMT CSCs and EMT CSCs, 
based on EMT progression. 

An increasing body of evidence shows that EMT is associ-
ated with the acquisition of CSC properties. In 2008, Mani 
et al (35) reported that the induction of EMT in immortalized 
human mammary epithelial cells results in the acquisition 
of mesenchymal traits, as well as the expression of stem 
cell markers. Stem‑like cells isolated either from mouse or 
human mammary glands or mammary carcinomas express 
EMT markers (35,97). Morel et al  (36) also indicated that 
cells possessing both stem and tumorigenic characteristics 
of ‘CSCs’ may be derived from human mammary epithelial 
cells following the activation of the Ras‑MAPK pathway. The 
acquisition of these stem cell and tumorigenic characteristics 
is driven by EMT induction. Santisteban et al (98) found that 
breast tumor cells undergoing EMT induced by CD8+ T cells 
acquired certain characteristics of breast CSCs, including 
potent tumorigenicity, resistance to conventional treatment, and 
the ability to form spheroids. Fang et al (99) demonstrated that 
Twist2 is overexpressed in breast cancer cells. Ectopic overex-
pression of Twist2 results in the induction of EMT and increases 
the number of CD44+/CD24‑ cells. Breast cancer cells exposed 
to TGF‑β and TNF‑α lead to the generation of breast cancer 
cells with stem‑like characteristics by induction of EMT (100). 
In addition to breast cancer, Ryu et al (101) identified that the 
gastric CSC marker CD44 was significantly associated with 
the protein expression of Snail‑1, ZEB‑1 and E‑cadherin. In 
colorectal cancer, EMT induced by brachyury increased the 
nanog expression and endowed the colorectal cells with stem 
cell attributes (102). In HNSCC, EMT conferring to stem cell 
phenotypes has also been observed. Xia et al (103) found that 
miR‑200a regulates the acquisition of stem‑like traits by the 
induction of EMT in nasopharyngeal carcinoma. Knockdown 
of miR‑200a induced EMT progression and resulted in stem 
cell attributes, including an increasing proportion of SP, sphere 
formation capacity, in vivo tumorigenicity in nude mice and 
stem cell marker expression. Chen et al (104) revealed that 
HNSCC‑ALDH1+ cells exhibit a high level of expression of 
Snail, and knockdown of Snail significantly decreased the 
expression of ALDH1. These data suggest that epithelial cells 
within tumors are able to convert into CSCs via EMT (Fig. 1). 
Moreover, Chen et al (105) demonstrated that upregulation 
of CD133 increased the phosphorylation of Src coupled with 
EMT transformation, and CD133/Src signaling is a regulatory 
switch resulting in EMT and stemness properties in HNSCC. 
This knowledge provides an improved understanding of the 
origin of CSCs and is a basis for novel cancer therapeutic 
strategies targeting EMT and CSCs.

VM allows tumor cells to express the endothelial pheno-
type and play a similar functional role to endothelial cells in 
forming blood vessel‑like structures. In fact, both epithelial 
and mesenchymal markers have been observed in tumor cells 
engaged in VM formation (14,106,107). Therefore, in view 
of the crucial role of EMT in the acquisition of stemness, it 
is plausible that CSCs are implicated in VM formation by 
induction of EMT (Fig. 1). Signal transducers and activators of 

transcription 3 transcription factor plays a critical role in the 
development and progression of a variety of tumors, including 
HNSCC, by regulating cell proliferation, cell cycle progres-
sion, apoptosis, angiogenesis, immune evasion and EMT, 
and through effects in CSCs. Garnier et al (108) found that 
tissue factor overexpression accompanies features of cellular 
aggressiveness, such as markers of CSCs (CD133), EMT and 
expression of the angiogenic and prometastatic phenotype. 
Recently, Gill et al demonstrated that Snail promotes the 
induction of Flk1+ endothelial cells in an early subset of 
differentiating mouse embryonic stem cells, depending on 
fibroblast growth factor signaling as well as the repression of 
the miR‑200 family (109). Hypoxia is one of the fundamental 
changes in the development and aggressiveness of a variety of 
solid tumors. It has been recognized to play critical roles in 
tumor invasion, metastasis, angiogenesis and chemo‑radiation 
resistance. In addition to tumor angiogenesis, HIF‑1a is closely 
associated with VM formation (4,110‑112). Recently, Misra 
et al (113) found that hypoxia‑exposure resulted in an upregu-
lation of c‑Myc and OCT3/4, and contributed to VM formation. 
Hypoxia was also recognized as an important regulator of 
CSCs and EMT through NF‑κB, PI3K/Akt/mTOR, Notch, 
Wnt/β‑catenin and Hedgehog signaling pathways (114,115). 
Thus, the hypoxia microenvironment may be important in VM 
formation through stemness maintenance and EMT induction.

5. Perspectives on cancer treatment 

It is clear that tumors are able to grow to a size of ~1‑2 mm3 
depending on the diffusion of oxygen and nutrients (116). In 
order to break the metabolic restriction and meet the demands 
of growth, invasion and metastasis, tumors must form their 
own vessels to provide oxygen and nutrients, and remove meta-
bolic waste. The microcirculation of tumors is heterogeneous, 
involving sprouting angiogenesis, vasculogenesis, co‑opted 
vessels, mosaic vessels and VM. Angiogenesis was the first 
mode of vascularization to be discovered and has been exten-
sively investigated. However, the success of anti‑angiogenesis 
treatment remains limited (117). Keunen et al (118) found that 
anti‑VEGF treatment with bevacizumab decreases the number 
of vessels and blood supply within the GBM xenograft, but 
it increases the invasion ability. Therefore, it is not sufficient 
to improve patient survival through anti‑angiogenesis therapy 
alone.

In reality, the coexistence of angiogenesis and VM is 
common within aggressive tumors. Angiogenesis inhibitors 
have little or even no effect on VM (10,19) and VM may 
replace the effect of angiogenesis to provide the tumor with 
oxygen and nutrients. Moreover, Qu et al (119) reported that 
anti‑angiogenesis therapy may even induce the formation of 
VM. Clearly, the combination of several treatments targeting 
angiogenesis and VM is required.

For quite some time, the survival rate of patients with 
aggressive tumors has remained at a low level, despite the 
administration of surgery, chemotherapy and radiotherapy. 
The existence of CSCs was thought to be an underlying 
cause. Although CSCs comprise only a small proportion of 
tumor cell populations, CSCs have high resistance to multiple 
chemotherapeutics and ionizing radiation. Remaining CSCs 
are able to induce recurrence following treatment with 
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chemotherapy and radiotherapy. Furthermore, it has been 
demonstrated that CSCs are implicated in VM formation. In 
this context, CSCs have been considered as a promising treat-
ment target in cancer patients with VM. It has been observed 
that tumors undergoing the process of EMT acquire resistance 
to chemotherapy (120). EMT is also involved in the acquisition 
of CSC properties (35,36,98), and EMT‑inducing CSCs have 
been considered as an important origin of CSCs and another 
target of VM formation in cancer. A combination of targeting 
EMT and CSCs may be beneficial for anti‑VM formation 
therapy, decreasing invasion and metastasis, and improving 
the survival rate of patients. 
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