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Abstract. Receptor tyrosine kinase (RTK) anaplastic lymphoma 
kinase (ALK) serves a crucial role in brain development. 
ALK is located on the short arm of chromosome 2 (2p23) and 
exchange of chromosomal segments with other genes, including 
nucleophosmin (NPM), echinoderm microtubule-associated 
protein-like 4 (EML4) and Trk-fused gene (TFG), readily 
occurs. Such chromosomal translocation results in the forma-
tion of chimeric X‑ALK fusion oncoproteins, which possess 
potential oncogenic functions due to constitutive activation of 
ALK kinase. These proteins contribute to the pathogenesis of 
various hematological malignancies and solid tumors, including 
lymphoma, lung cancer, inflammatory myofibroblastic tumors 
(IMTs), Spitz tumors, renal carcinoma, thyroid cancer, digestive 
tract cancer, breast cancer, leukemia and ovarian carcinoma. 
Targeting of ALK fusion oncoproteins exclusively, or in combi-
nation with ALK kinase inhibitors including crizotinib, is the 
most common therapeutic strategy. As is often the case for 
small-molecule tyrosine kinase inhibitors (TKIs), drug resis-
tance eventually develops via an adaptive secondary mutation in 
the ALK fusion oncogene, or through engagement of alternative 
signaling mechanisms. The updated mechanisms of a variety of 
ALK fusions in tumorigenesis, proliferation and metastasis, in 
addition to targeted therapies are discussed below.
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1. Introduction

Located on chromosome 2p23, receptor tyrosine kinase 
(RTK) anaplastic lymphoma kinase (ALK) is physiologically 
expressed in fetal neural cells. Phosphorylated and activated 
ALK controls the basic mechanisms of cell proliferation, 
survival and differentiation during development of the nervous 
system (1). In 1994 ALK t(2;5) chromosomal translocation 
was reported in anaplastic large cell lymphoma (ALCL) (2). 
This translocation induced formation of the nucleophosmin 
(NPM)-ALK chimeric protein (3). Over the ensuing two 
decades, ALK fusion oncogenes have been associated with 
the development of diverse tumor types of different lineages, 
including, but not limited to, lymphoma, lung cancer, inflam-
matory myofibroblastic tumors (IMTs), Spitz tumors, renal 
carcinoma, thyroid cancer, digestive tract cancer, breast 
cancer, leukemia and ovarian carcinoma. During this period, 
the discovery of EML4‑ALK in non-small cell lung cancer 
(NSCLC) was a major development that led to significant 
diagnostic and therapeutic advances (4).

In general, ALK fusions arise from fusion of the 3' end of 
the ALK gene (exons 20-29) with the 5'portion of a different 
gene (5). To date, numerous X-ALK fusion oncoproteins have 
been identified in various tumor types of different lineages. 
Although targeting ALK fusions markedly promotes tumor 
shrinkage due to acquisition of activating mutations, genomic 
rearrangement or copy number amplification of ALK, a subset 
of patients inevitably acquire resistance to ALK inhibitors. 
The functional roles of a variety of ALK fusions in neoplasms 
and targeted therapy advances are summarized below.

2. ALK rearrangement

In the majority of cancer types, ALK is activated via chro-
mosomal rearrangement. The breakpoint of ALK often 
occurs at intron 19, which results in dissociation of the 3' end 
of exons 20-29 from 5' end sequences, including the gene 
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promoter, regulatory elements and coding sequences corre-
sponding to the extracellular and transmembrane domains of 
ALK. The other breakpoint affects a diverse group of genes 
that contribute to the fusion oncogene, including a different 
gene promoter and a series of 5' exons of variable lengths 
and properties, which predominantly share the ability to 
self-associate. Additionally, clinical data indicate that different 
fusion partners affect treatment responses in patients with 
lung cancer (6). The resulting fusion oncoproteins (X-ALK) 
are chimeric, self-associating polypeptides with a variety 
of N-terminal domains and a common, constitutively active 
C-terminal tyrosine kinase domain (Fig. 1) (5).

In 1994, Morris et al (2), first demonstrated NPM‑ALK 
expression in ALCL. Subsequently, a variety of fusion 
partners have been found (Table I), including the following: 
α-2-macroglobulin (A2M); 5-aminoimidazole-4-carboxamide 
ribonucleotide formyltransferase (ATIC); carbamoyl-phos-
phate synthetase 2, aspartate transcarbamylase, and 
dihydroorotase (CAD); cysteinyl-tRNA synthetase (CARS); 
clathrin heavy chain (CLTC); dynactin (DCTN1); echinoderm 
microtubule-associated protein like-4 (EML4); fibronectin 1 
(FN1); huntingtin-interacting protein 1 (HIP1); kinesin family 
member 5B (KIF5B); kinesin light chain 1 (KLC1); moesin 
(MSN); non-muscle myosin heavy chain 9 (MYH9); PTPRF 
interacting protein, binding protein 1 (PPFIBP1); RAN 
binding protein 2 (RANBP2); ring finger protein 213 (RNF213); 
SEC31 homolog A (SEC31A); spectrin beta non-erythrocytic 1 
(SPTBN1); sequestosome 1 (SQSTM1); striatin (STRN); 
TRK-fused gene (TFG); tropomyosin 3 (TPM3); tropo-
myosin 4 (TPM4); translocated promoter region (TPR); TNF 
receptor-associated factor 1 (TRAF1); and vinculin (VCL).

The precise mechanisms of ALK gene rearrangement 
remain unclear. Widely considered a key source of genomic 
rearrangement, non-homologous end-joining may be divided 
into 3 steps: i) Generation of double-stranded DNA breaks; 
ii) ligation of DNA; and iii) gene rearrangement (7,8). 
Fluorescence in situ hybridization (FISH) and immunohis-
tochemistry (IHC) are widely used in clinical settings to 
detect ALK rearrangements (9-11). However, FISH and IHC 
exhibit low specificity in the recognition of fusion partners, 
which may be identified by reverse transcription polymerase 
chain reaction (RT‑PCR) or rapid amplification of cDNA ends 
(RACE)-coupled PCR sequencing (10,12).

3. Roles of ALK fusion oncoproteins in cancer pathogenesis

Lymphoma. Lymphomas comprise a group of blood cancer 
types that develop from lymphocytes and are classified as 
either Hodgkin's lymphoma (HL, 10%) or non-Hodgkin's 
(NHL, 90%) lymphoma. Based on the normal function of 
lymphocytes, NHL may be further divided into three subtypes: 
i) B cell NHL; ii) T cell NHL; and iii) natural killer cell NHL. 
Compared with HL, NHL patients have a poor prognosis, and 
the five‑year survival rate is ~69% (13,14).

According to certain studies, ALK rearrangements are 
common in ALCL, which is a type of T cell NHL (15). Statistically, 
a total of ~90% of ALCLs in children and teenagers, and 50% 
of ALCLs in adults are ALK-fusion-positive (16-18). The most 
frequent ALK fusion partner is NPM, as the ALK-NPM fusion 
protein is observed in ~70‑80% of all ALCL cases. A total 

of ~25% cases of ALCL exhibit the TPM3‑ALK rearrange-
ment, whereas other rearrangements, including TFG‑ALK, 
ATIC‑ALK and CLTC1‑ALK, are rare (Table I). Notably, 
the prognoses of patients with ALK-fusion-positive ALCL 
are substantially improved compared with those of patients 
with ALK‑fusion‑negative ALCL (the five‑year survival rate 
is 70-80% for ALK-fusion-positive patients compared with 
15-45% for ALK-fusion-negative patients) (19,20).

Expression of X-ALK was thought to be restricted 
to ALK-fusion-positive ALCLs; however, in 1997, 
Delsol et al (21), first demonstrated aberrant expression of 
NPM-ALK in diffuse large B cell lymphoma (DLBCL). 
ALK-fusion-positive DLBCL is usually a nodal disease that 
affects 34~55 years old males, presents at advanced clinical 
stages and has a poor prognosis (22). The most common ALK 
rearrangement in DLBCL is t(2;17)(p23;q23), which corre-
sponds to the CLTC‑ALK fusion; a minority are NPM‑ALK 
rearrangements (23). Rare cases that harbor SEC31A‑ALK and 
SQSTM1‑ALK fusions have also been described (24-27).

Lung cancer. Lung cancer is the most prevalent type of cancer 
and the leading cause of mortality among all malignancies. 
Despite tremendous progress in the diagnosis and treatment 
of lung cancer, prognosis for these patients remains poor, 
with only 15% surviving more than 5 years after initial diag-
nosis (28). NSCLC accounts for ~80‑85% of these cases of 
lung cancer, whereas the remainder involve small cell lung 
cancer and lung carcinoid tumors (29).

The EML4‑ALK fusion was first observed in 5 out of 75 
(6.7%) Japanese patients with NSCLC; notably, these patients 
did not harbor epidermal growth factor receptor (EGFR) or 
KRAS mutations (4). Multiple studies have determined the 
frequency of the EML4‑ALK translocation in NSCLC patients, 
which ranges from 2 to 7% in individual studies, with an 
average frequency of ~5% (30‑37). During the past decade, over 
11 different variants of EML4‑ALK have been identified in a 
variety of tumors, including NSCLC, digestive tract and breast 
cancer. The most common variant among EML4‑ALK fusions 
is variant 1 (33%), followed by variant 3 (29%) and variant 
2 (10%) (12,38). Furthermore, other ALK fusion partners 
have been identified in NSCLC, including KLC, TFG, KLC, 
and KIF5B (39-41). ALK-rearranged NSCLC is frequently 
observed in young patients, in addition to never or former light 
smokers. Morphologically, acinar, tubulopapillary, cribriform 
and solid patterns are the most common histological subtypes, 
and >10% of tumor cells display a distinctive signet ring 
morphology with abundant intracellular mucin (42). In addi-
tion, the oncogenic potential of X‑ALK has been confirmed 
in lung cancer models, including patient-derived cell lines 
and transgenic mouse models. Several studies have identified 
the X‑ALK gene in a number of NSCLC patients harboring 
EGFR mutations (38,43-46). The majority of these patients are 
insensitive to the ALK inhibitor crizotinib, but exhibit a partial 
response to the EGFR inhibitor erlotinib. Therefore, they may 
not further benefit from coordinated treatment with ALK and 
EGFR inhibitors compared with either intervention alone.

IMTs. IMT is a type of mesenchymal neoplasm composed 
of a mixture of several inflammatory cells, which primarily 
occurs in children (47,48). IMTs are generally benign or 
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low-grade malignant tumors, and patients usually only require 
surgical treatment (49,50). According to certain statistics, 
~50% of IMTs are ALK‑fusion‑positive, and two of the most 
common fusion partners are TPM3 and TPM4 (51). Similar to 
ALCL, various ALK fusion partners have been identified in 
IMTs, including PPF1BP1, PCTN1, RANBP2, EML4, CLTC, 
CARS, ATIC, SEC31A and FN1 (Table I). Additionally, a study 
suggested that patients with ALK-fusion-positive IMT may 
exhibit a more favorable prognosis compared with those with 
ALK-fusion-negative IMT (52).

Spitz tumors. Spitz tumors are a type of melanocytic neoplasm 
that tend to occur in younger people (2-35 years old). Spitz 
tumors may be divided into three subtypes: i) Benign Spitz 
nevus; ii) atypical Spitz tumor; and iii) Spitz malignant 
melanoma (53). In 2014, DCTN1‑ALK and TPM3‑ALK were 
identified in Spitz tumors (53,54). Follow-up studies have 
demonstrated that activation of the X-ALK oncoprotein serves 
an important role in the pathogenesis of Spitz tumors (55).

Renal carcinoma. Renal carcinoma, a type of tumor that origi-
nates from cells in the kidney, accounts for <2% of all cancer 
types. Renal carcinoma may be divided into two main subtypes: 
i) renal cell carcinoma (RCC) with a poor prognosis; and ii) tran-
sitional cell carcinoma (accounting for 5-10% of cases) (56). Due 
to the difficulty of early diagnosis in renal carcinomas, their 
pathogenesis is not completely known. ALK fusions have been 
documented in a small percentage of RCCs (<1%) (57,58). Based 
on clinical settings, RCCs with ALK translocation are divided 
into two categories: i) RCCs with VCL‑ALK, composed of sickle 
cells; and ii) other fusions, which are not associated with sickle 
cell composition (59,60). In addition to ALK rearrangements, up 
to 10% of RCC cases show a low level of ALK copy number 

gains (58). The therapeutic relevance of these findings in RCC is 
yet to be established.

Thyroid cancer. Thyroid cancer is a common type of endocrine 
tumor that is classified as either benign thyroid adenoma or a 
thyroid malignancy (61). Based on the cells that comprise these 
tumors, thyroid malignancies can be further divided into four 
subtypes: i) papillary (PTC; 80-85%); ii) follicular (10-15%); 
iii) medullary (3%); and iv) anaplastic thyroid cancer (ATC; 
2%). Among these four types of tumor, the degree of malig-
nance of ATC is high, and its prognosis is poor, with a median 
patient survival of only 5 months (62-64). In 2015, transloca-
tions involving ALK were detected by Chou et al (65), in 2.2% 
of PTC patients. Several other ALK fusion genes have been 
reported in thyroid cancer, including EML4‑ALK, TFG‑ALK 
and STRN‑ALK (Table I).

Digestive tract cancer. Digestive tract cancer refers to 
neoplasms of the digestive system, including cancer of the 
mouth, esophagus, stomach and intestines. Epidemiological 
studies have indicated that the frequency of different diges-
tive tract cancer types differs widely in different countries. 
A recent study illustrated that several factors determine the 
prognosis of patients with digestive tract cancer, including the 
location of the tumor, clinical stage and the type of cancer 
cell (66). In 2006, the TPM4‑ALK fusion was first reported 
in esophageal squamous cell carcinomas (67). Subsequently, 
other fusion partners have been described in digestive tract 
cancer, including EML4, CAD and SPTBN1 (68-70).

Other neoplasms. Surveys in which a variety of techniques 
have been applied to a large series of tumors have revealed 
differentially convincing evidence of ALK rearrangement in 

Figure 1. Schematic structure of the (A) ALK gene, (B) ALK protein and (C) an ALK oncoprotein, illustrating a prototypical oncogenic rearrangement (5). SP, 
signal peptide; TM, transmembrane domain; CC, coiled coil domain; ALK, anaplastic lymphoma kinase.

https://www.spandidos-publications.com/10.3892/ol.2018.9856
https://www.spandidos-publications.com/10.3892/ol.2018.9856
https://www.spandidos-publications.com/10.3892/ol.2018.9856


CAO et al:  ADVANCES OF ALK FUSIONS IN CANCER 2023

Table I. ALK fusion proteins described in diverse tumors.

Gene fusion Chromosomal aberration Partner protein Tumor type Frequency, % (Refs.)

NPM‑ALK t(2;5)(p23;q35) Nucleophosmin Lymphoma  45  (3,22)
MSN‑ALK t(X;2)(q11-12;p23) Moesin Lymphoma  <1  (106)
MYH9‑ALK t(2;22)(p23;q11) Non-muscle myosin  Lymphoma  <1 (107)
  heavy chain 9 
RNF213‑ALK t(2;17)(p23;q25) Ring finger protein 213 Lymphoma  <1 (108)
TRAF1‑ALK t(2;9)(p23;q33.2) Tumor necrosis factor Lymphoma  N/A  (109)
  receptor-associated
  factor 1 
ATIC‑ALK inv(2)(p23q35) 5-aminoimidazole-4- Lymphoma 2  (110)
  carboxamideRibonucleotide IMT  <1 (39)
  formyltransferase  
CLTC‑ALK t(2;17)(p23;q23) Clathrin heavy chain Lymphoma  <1 (23,108) 
   IMT  13  (111)
SQSTM1‑ALK t(2;5)(p23.1;q35.3) Sequestosome 1 Lymphoma  <1 (26)
   Lung cancer  <1 (112)
TFG‑ALK t(2;3)(p23;q21) Tyrosine kinase Lymphoma  <1 (113)
  receptor-fused gene  Lung cancer  <1 (39)
   Thyroid cancer  2 (63)
TPM4‑ALK  t(2;19)(p23;p13) Tropomyosin 4 Lymphoma  3  (114,115)
   IMT  17  (67)
   Digestive tract cancer  2
TPM3‑ALK t(1;2)(q21;p23) Tropomyosin 3 Lymphoma  9 (115,116)
   IMT  21  (39)
   Renal carcinoma  <1 (53,54)
   Spitz tumor  6
A2M‑ALK t(2;12)(p23;p13) α-2-macroglobulin Lung cancer  <1 (117)
HIP1‑ALK t(2;7)(p23;q11.23) Huntingtin-interacting  Lung cancer  N/A  (118,119)
  protein 1 
KIF5B‑ALK t(2;10)(p23;p11) Kinesin family  Lung cancer  <1 (40)
  member 5B 
KLC1‑ALK t(2;14)(p23;q32.1) Kinesin light chain 1 Lung cancer  N/A  (41)
TPR‑ALK t(1;2)(q31.1;p23) Translocated promoter  Lung cancer  N/A  (120)
  region 
EML4‑ALK inv(2)(p21p23) Echinoderm microtubule- Lung cancer 5  (4)
  associated protein like-4 IMT  <1 (50)
   Thyroid cancer  2  (121)
   Renal carcinoma  <1 (39)
   Digestive tract cancer  N/A  (71)
   Breast cancer  <1 (71)
DCTN1‑ALK inv(2)(p13p23) Dynactin Lung cancer  <1 (112,122) 
   IMT  <1 (123)
   Thyroid cancer  <1 (53,54)
   Spitz tumor  4
CARS‑ALK t(2;11;2)(p23;p15;q31) Cysteinyl-tRNA synthetase IMT  <1 (108)
PPFIBP1‑ALK t(2;12)(p23;p11) Protein tyrosine  IMT  <1 (124)
  phosphatase, receptor type 
  F-interacting protein,  
  binding protein 1  
SEC31A‑ALK t(2;4)(p23;q21) SEC31 homolog A IMT  <1 (125)
FN1‑ALK inv(2)(p23q34) Fibronectin 1 IMT  <1 (126)
   Ovarian sarcoma  <1 (73)
RANBP2‑ALK inv(2)(p23q11-13) RAN binding protein 2 IMT  3 (127)
   Leukemia  <1 (72)
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rare cases of breast carcinoma (fusions in 5 out of 209 cases 
assessed by RT-PCR) (71), leukemia (fusions in 3 out of 
1,708 cases assessed by RT-PCR) (72) and ovarian carcinoma 
(3 out of 69 tumors expressed ALK) (73). Although these 
reports are technically sound, for the most part, the relevance 
of these findings remains to be clarified through functional 
studies in pertinent models.

4. Therapeutic implications

ALK is a compelling therapeutic target, as it is a critical 
oncogenic driver in diverse tumor types of different lineages. 
However, its expression and functions are limited in normal 
tissues. Indeed, Bilsland et al (74) confirmed that ALK 
double‑knockout mice exhibited no significant phenotypic 
differences, a normal life span, no structurally detectable 
defects and minor behavioral abnormalities, which advo-
cates a wide non‑toxic therapeutic window of ALK‑specific 
inhibition. Various therapeutic methods for tumor treatment 
are currently in development, including direct targeting of 
activated ALK with small-molecule inhibitors or immuno-
therapeutic agents and modulation of downstream signaling 
intermediates in cancer types with ALK rearrangement. 
In addition, the X-ALK fusion oncoprotein predominantly 
activates the RAS/MAPK cell proliferation pathway, in 
addition to the PI3K/AKT/mTOR and JAK/STAT cell 
survival pathways. Therefore, an understanding of these 
downstream effectors has prompted the development of 
novel therapeutic strategies, some of which are being tested 
in preclinical/clinical trials.

Multiple structurally distinct ALK drugs are being devel-
oped based on a deep understanding of the structure of ALK 
(Table II), three of which are currently in clinical use for 
the treatment of ALK-fusion-positive lung cancer, including 
crizotinib, ceritinib and alectinib. Crizotinib, an oral ALK 
TKI, has been extensively studied in preclinical and clinical 
settings. Early phase I studies (PROFILE 1001) have indicted 
notable activity of crizotinib, with satisfactory tolerability in 
patients with ALK-fusion-positive NSCLC (75,76). Two-phase 
III studies further demonstrated the superiority of crizotinib to 
standard chemotherapy in patients with advanced NSCLC with 
X‑ALK. One of these studies (PROFILE 1007) illustrated that 

crizotinib treatment significantly prolonged progression‑free 
survival (PFS), which was the primary end point, compared 
with chemotherapy with either pemetrexed or docetaxel (7.7 
vs. 3.0 months, respectively) (77). Another study (PROFILE 
1014) compared crizotinib with carboplatin or cisplatin plus 
pemetrexed in 343 patients with advanced X‑ALK NSCLC, 
and clarified the significance of crizotinib as a first‑line treat-
ment for these tumors (78). Furthermore, crizotinib displayed 
excellent activity in IMT and ALCL cases harboring X‑ALK 
fusions (79).

Despite the excellent efficacy of crizotinib in the 
setting of NSCLC with ALK translocation, almost all 
patients developed resistance to crizotinib, but the exact 
molecular mechanism underlying this phenomenon is 
yet to be confirmed. The known mechanisms that confer 
intrinsic or acquired resistance to crizotinib are as follows: 
i) secondary mutations in the ALK kinase domain (L1152R, 
C1156Y, I1171T, F1174C/L/V, L1196M, G1202R, S1206Y, 
E1210K and G1269A/S); ii) ALK gene amplification; and 
iii) activation of alternative ALK-independent survival 
pathways, including the EGF signaling pathway, the IGF 
signaling pathway, the RAS/SRC signaling pathway, and 
the AKT/mammalian target of rapamycin (mTOR) signaling 
pathway (80-87). Synergistic and/or complementary 
treatment strategies to overcome resistance are being inves-
tigated. Second-generation ALK TKIs, such as ceritinib and 
alectinib, have been demonstrated to be effective not only in 
crizotinib-sensitive patients, but also in those who are resis-
tant to crizotinib. Furthermore, other therapeutic options 
to overcome drug resistance have been proposed, e.g., the 
use of heat shock protein 90 (HSP90) inhibitors, which can 
indirectly inhibit ALK fusion (88,89).

Currently, multiple ALK TKIs, including ceritinib, alec-
tinib, lorlatinib, entrectinib, brigatinib, CEP-28122, TSR-011, 
X-396 and ASP3026, are being investigated as potential 
therapies for cancer types characterized by ALK rearrange-
ment (Table II). Ceritinib, a highly potent and selective TKI, 
was approved by the Food and Drug Administration (FDA) as 
a second-line treatment for patients with X‑ALK NSCLC, and 
following unsuccessful treatment with crizotinib. A total of 
114 patients with ALK‑fusion‑positive NSCLC were enrolled 
in a global multi-institutional phase I trial, among whom 70% 

Table I. Continued.

Gene fusion Chromosomal aberration Partner protein Tumor type Frequency, % (Refs.)

STRN‑ALK t(2)(p23;p22.2) Striatin Thyroid cancer  <1      (63,128)
   Renal carcinoma  N/A
VCL‑ALK t(2;10)(p23;q22) Vinculin Renal carcinoma  <1 (59)
CAD‑ALK inv(2)(p23;p22) Carbamoyl-phosphate  Digestive tract cancer  <1 (69)
  synthetase 2, aspartate
  transcarbamylase, 
  and dihydroorotase 
SPTBN1‑ALK t(2)(p16.2;p23) Spectrin β non-erythrocytic 1 Digestive tract cancer  <1 (70)

Not all ALK fusions identified worldwide are included; clear statistics are not available for several ALK fusions found in tumors. IMT, inflam-
matory myofibroblastic tumor; N/A, data unavailable.
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were crizotinib-sensitive and 30% were crizotinib-resistant. 
All patients received at least 400 mg of crizotinib per day, 
and the overall response rate (ORR) was 59% (90). Alectinib 
is a TKI used clinically that exhibits minimal inhibitory 
activity against kinases other than ALK and RET (91,92). 
Furthermore, in vitro and in vivo studies have demonstrated 
that alectinib effectively inhibits ALK with or without the 
gatekeeper mutation L1196M (92). A separate clinical study 
was conducted to investigate the safety and activity of alec-
tinib in TKI-naive patients with X‑ALK NSCLC, with an 
ORR of 48% (93). Lorlatinib, which is structurally similar 
to crizotinib, has been demonstrated to be active against 
identified crizotinib‑resistant ALK mutations, such as the 
most common mutation seen clinically (G1202R) (94). In 
2014, Brigatinib received breakthrough therapy designation 
from the FDA and a nationwide phase III clinical study in 
which brigatinib was compared with crizotinib in patients 
with X‑ALK NSCLC was recently initiated (95). Furthermore, 
the antitumor activities of at least 5 other novel ALK inhibi-
tors, including entrectinib, CEP-28122, TSR-011, X-396 and 
ASP3026, have been shown in vitro, and these agents are 
currently under clinical investigation (96-98). In addition to 
targeting ALK directly, several pharmacological strategies 
allow its indirect targeting. Specifically, HSP90 inhibitors, 
including retaspimycin and tanespimycin, have displayed 
certain clinical efficacy in the treatment of patients with ALK 
rearrangements (84,99,100).

5. Conclusion

ALK fusions are remarkably versatile oncoproteins that may 
drive a variety of tumors of different lineages, including, but 
not limited to, lymphoma, lung cancer, IMTs, Spitz tumors, 
renal carcinoma, thyroid cancer, digestive tract cancer, breast 
cancer, leukemia and ovarian carcinoma. Furthermore, a profu-
sion of ALK fusion partners has been consistently identified in 
ALK-translocated cancer types, which are unique neoplasms 
that can be effectively targeted by several clinically available 
TKIs, including crizotinib, ceritinib and alectinib. By using 
alternative methods of tumor detection, novel ALK trans-
locations may be discovered in upcoming years, which may 
reveal novel aspects of ALK biology. Substantial efforts are 
focused on therapeutic considerations and novel approaches 
to target ALK, including rationally designed tyrosine kinase 
inhibitors, the study of resistance mechanisms, the design of 
dual-blockade therapeutic strategies that target downstream 
signaling intermediates, and immunotherapy against activated 
receptor tyrosine kinases.

In addit ion to disease-causing gene mutations, 
genome-level alterations, including chromosomal imbal-
ances and instability, clonal chromosomal aberrations 
(CCAs, also known as recurrent karyotypic alterations) 
and non-clonal chromosome aberrations (NCCAs), also 
serve a significant role in carcinogenesis and the develop-
ment of malignant tumors. Since cancer‑specific aneuploidy 

Table II. Novel drugs for use in therapies targeting ALK rearrangement tumors.

Drug Molecular target Tumor Phase (Refs.)

Crizotinib  NPM‑ALK,  Lung cancer Approved by FDA (75-78)
 EMLA‑ALK,  IMT Phase II/III ongoing (129,130)
 RANBP2‑ALK
Ceritinib EML4‑ALK Lung cancer Approved by FDA (90)
  Thyroid cancer Phase II/III ongoing (79)
Alectinib  EML4‑ALK Lung cancer Approved by FDA (131,132)
Lorlatinib  NPM‑ALK, EML4‑ALK Lung cancer Phase I/II ongoing (133,134)
  Lymphoma  Phase I/II ongoing (135)
Entrectinib  EML4‑ALK, Lung cancer Phase I/II ongoing (98)
 CAD‑ALK Digestive tract cancer Phase I/II ongoing (69)
Brigatinib  NPM‑ALK, EML4‑ALK Lung cancer Phase I/II ongoing (136,137)
CEP-28122 NPM‑ALK Lung cancer Preclinical study (138)
  Lymphoma Preclinical study 
TSR-011 EML4‑ALK Lung cancer Phase I/II ongoing (139)
X-396 EML4‑ALK Lung cancer Phase I/II ongoing (98)
ASP3026 NPM‑ALK, EML4‑ALK Lung cancer Phase I ended (134,140)
  Lymphoma  Phase I ended (96)
Retaspimycin  EML4‑ALK Lung cancer Preclinical study (88,89)
(HSP90 inhibitor)    
Tanespimycin NPM‑ALK, EML4‑ALK, Lung cancer Preclinical study (141)
(HSP90 inhibitor)  TPR‑ALK, RANBP2‑ALK Lymphoma Preclinical study (100)
  IMT Preclinical study (84)

Only clinically available drugs are listed; the development of ASP3026 was discontinued due to strategic adjustment of the company. IMT, 
inflammatory myofibroblastic tumor; HSP90, heat shock protein 90; ALK, anaplastic lymphoma kinase; FDA, Food and Drug Administration.
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catalyzes karyotypic variation, the degree of aneuploidy 
predicts the clinical risk of tumor progression. Increasing 
evidence has indicated the complexity of cancer, which 
cannot be explained by somatic mutation theory. To address 
this complexity, additional ad hoc explanations have been 
postulated, and carcinogenesis is thought to represent a 
problem of tissue organization on the basis of tissue orga-
nization field theory (101‑103). According to recent studies, 
chromosomal aberration-mediated genome evolution is 
responsible for all major transitions in cancer evolution, 
including phenotypic plasticity, metastasis and drug resis-
tance (104,105). It is believed that the genome serves as 
the evolutionary platform that links gene/epigene interac-
tion and multiple levels of omics, which can be driven by 
genome-level alteration rather than individual hallmarks as 
gene mutation or epigenetic alteration. Conclusively, ongoing 
research with the aim of characterizing the clinicopatho-
logical and biological consequences of ALK rearrangement 
may allow us to better understand the genome-mediated 
evolutionary mechanism of cancer.
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