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Abstract. Gastrointestinal tumors account for five of the top 
10 causes of mortality from all cancers (colorectal, liver, 
stomach, esophageal and pancreatic cancer). Mammalian 
target of rapamycin (mTOR) signaling is commonly dysreg‑
ulated in various human cancers. As a core component of 
the mTOR complex 2 (mTORC2), Rictor is a key effector 
molecule of the PI3K/Akt pathway. A high alteration rate 
of Rictor has been observed in gastrointestinal tumors, and 
such Rictor alterations are often associated with resistance 
to chemotherapy and related adverse clinical outcomes. 
However, the exact roles of Rictor in gastrointestinal 
tumors remain elusive. The aim of the present study was to 
critically discuss the following: i) Mutation and biological 
characteristics of Rictor in tumors with a detailed overview 
of Rictor in cell proliferation, angiogenesis, apoptosis, 
autophagy and drug resistance; ii)  the role of Rictor in 
tumors of the digestive system, particularly colorectal, 
hepatobiliary, gastric, esophageal and pancreatic cancer 
and cholangiocarcinoma; and iii)  the current status and 
prospects of targeted therapy for Rictor by inhibiting 
Akt activation. Despite the growing realization of the 
importance of Rictor/mTORC2 in cancer, the underlying 
mechanistic details remain poorly understood; this needs 
to change in order for the development of efficient targeted 
therapies and re‑sensitization of therapy‑resistant cancers 
to be made possible.
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1. Introduction

According to the most recent figures from the International 
Agency for Research on Cancer on incidence and mortality, 
there will be 28.4 million new cases of cancer worldwide 
in 2040, a 47% increase from 2020. Out of all cancer cases, 
gastrointestinal tumors account for five of the top 10 causes 
of mortality [colorectal cancer (CRC; 9.4%), liver cancer 
(8.3%), stomach cancer (7.7%), esophageal cancer (5.5%), and 
pancreatic cancer (4.7%)] (1). Owing to the high metastasis and 
recurrence of these gastrointestinal tumors, the 5‑year overall 
survival rate for advanced tumors is poor (2,3). Cancer treat‑
ment has undergone profound changes in recent years with 
the continuous development of the understanding of cancer 
biology at the molecular level. For instance, a large number 
of targeted drugs have been approved as a first‑line treatment 
for numerous tumors (4). However, clinical studies revealed 
that these drugs are ineffective for patients with Rictor altera‑
tions (5). These studies suggested that Rictor is involved in 
tumor resistance and may act as a therapeutic target.

Genomic instability and mutation are important features of 
cancer cells. According to The Cancer Genome Atlas (TCGA) 
database (6), as determined by the alterations of Rictor in 
respective patient samples as a fraction of the total number 
of patients screened, in non‑small‑cell lung cancer, 41.3% 
(19/46 cases) of patients had altered Rictor levels. Similarly, 
the figures for altered Rictor are 14.11% (23/163 cases) in 
esophagogastric cancer, 13.64% (42/308 cases) in pancreatic 
cancer, 11.54% (23/163 cases) in CRC and 8% (29/358 cases) 
in hepatobiliary cancer (Fig. 1). Further data from the TCGA 
dataset comprising 991 samples showed different types of 
Rictor alterations (Fig. 2). In addition, the overall survival rates 
of patients with high Rictor expression in tumor tissues was 
observed to be low. For instance, Bian et al (7) demonstrated 
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through immunohistochemistry that high Rictor expression 
is associated with rapid tumor progression and poor prog‑
nosis in patients with gastric cancer (GC). A study from the 
Southern Medical University of China revealed that a high 
Rictor expression leads to poor clinical prognosis in CRC (8). 
From the analysis of 201 samples of esophageal squamous 
cell carcinoma (ESCC), it was found that Rictor expression 
was positively associated (P=0.011) with the cancer stage, 
according to the grading by the American Joint Committee 
on Cancer (AJCC), and negatively associated (P=0.007) with 
survival (9). These findings are sufficiently exciting to warrant 
a detailed discussion of the role of Rictor in the biology of 
gastrointestinal cancers.

2. Overview of Rictor and the mTOR pathway

The mTOR and its signaling pathway have important roles 
in regulating protein synthesis, cell growth, apoptosis, angio‑
genesis and migration. Dysfunction of the mTOR signaling 
pathway is common in several human cancers (10,11). mTOR 
exists in two complexes: The mTOR complex 1 (mTORC1) 
and mTORC2. mTORC2 consists of mTOR, mTOR‑associated 
protein, LST8 homolog mLST8, Rictor, mSin1 and proteins 
associated with Rictor 1/2, which are sensitive to growth factor 
levels and responsible for the regulation of cell proliferation, 
metabolism, survival and cytoskeletal remodeling (12). Rictor 
is a core subunit of mTORC2. The function of mTORC2 is 
dependent on Rictor, which is insensitive to rapamycin.

R ictor  was d iscovered and cha racter ized by 
Sarbassov et al (13). It has 1,709 amino acids with a molecular 
weight of 190 kDa. Rictor has seven domains with sequence 
conservation in mammals. It signals to the actin cytoskeleton 
by regulating protein kinase Cα (PKCα) phosphorylation. A 
structural analysis and functional domain studies revealed that 
Rictor contains the HEAT and WD40 domains, which may be 
the common motifs interacting with mTORC (14). Rictor also 
has a pleckstrin homology domain that is similar to human 
39S protein L17 and 50S protein L17. This ribosome‑binding 
domain is required for cellular localization and transmission of 
signals to downstream targets by Rictor/mTORC2 interaction. 

3. General biological effects of Rictor in cancer cells

Mutations and biological characteristics of Rictor in tumors 
reported to date are presented in Fig. 3.

Autophagy. Eukaryotes have used autophagy as a crucial 
intracellular turnover process throughout evolution. It enables 
cells to keep their intracellular environment stable. However, 
the influence of autophagy on specific cell functions remains 
controversial. Autophagy has been linked to cell survival and 
death processes under metabolic stress. Autophagy reportedly 
affects tumorigenesis and treatment (15,16). Using bioinfor‑
matics analyses, Hao et al (17) observed that Rictor was a 
direct target of microRNA (miR)‑let‑7a. Rescue experiments 
in vitro showed that miR‑let‑7a promoted the autophagy level 
by inhibiting the expression of Rictor in GC cells. In addition, 
as an upstream executor of the Akt‑mTOR signaling pathway, 
Rictor exerted its effect on autophagy by phosphorylating Akt 
and mTOR, and this regulatory process was also mediated by 

miR‑let‑7a. miR‑let‑7a in GC regulates autophagy by targeting 
Rictor and follows the regulation of the Akt‑mTOR signaling 
pathway. Seo et al (18) reported that downregulation of Rictor 
was induced after co‑treatment with PP242 and curcumin in 
renal cancer cells. Downregulation of Rictor increased cyto‑
solic calcium release from the endoplasmic reticulum, leading 
to lysosomal damage in the cell, which induced autophagy. 
Liu et al (19) reported that Akt is further activated by trig‑
gering the phosphorylation of mTOR, which regulates the 
growth, autophagy and apoptosis of tumor cells, including GC 
cells. 

Proliferation. The PI3K/Akt signaling pathway stimulates 
cell survival and metabolism, inhibits apoptosis and regu‑
lates tumor cell survival and proliferation. The activation 
of Akt depends on the phosphorylation of PIP3 (PDK1) at 
Thr308 and PDK2 at Ser473, and the phosphorylation of 
Ser473 promotes that of Thr308. Sarbassov et al (20) found 
that mTORC2 is PDK2 at the Ser473 site of phosphorylated 
Akt in Drosophila cells. Hresko and Mueckler  (21) veri‑
fied the above hypothesis in 3T3‑L1 cells. These studies 
suggested that Rictor participates in the PI3K/Akt signaling 
pathway with mTORC2 and then regulates cell survival and 
nutrient uptake through mTORC1 downstream of Akt, as 
well as protein synthesis and cell cycle through glycogen 
synthase kinase 3 (GSK‑3). The PI3K/Akt/mTOR signaling 
pathway is frequently altered in malignant tumors and Rictor 
is a key component of this pathway (22). Resistance to the 
inhibition of the adjacent PI3K pathway is usually character‑
ized by the feedback activation of Akt, which is related to the 
mechanisms involving Rictor (23).

Serum and glucocorticoid‑induced protein kinase (SGK) 
is a member of the protein kinase A/protein kinase G/protein 
kinase C (AGC) family and exists in three subtypes in cells: 
SGK1, SGK2 and SGK3. SGK1 is usually activated by 
insulin or nutritional factors and helps regulate cell nutrient 
uptake  (24), survival, proliferation and apoptosis  (25). 
García‑Martínez et al (26) found that Rictor can directly bind 
to SGK1 in the form of mTORC2 and phosphorylate its Ser422 
site, independent of PI3K. This finding has been verified in 
293, MCF‑7 and HeLa cells. 

Apoptosis inhibition. Studies have confirmed that Rictor 
stimulates cell growth and proliferation by activating Akt 
(also known as protein kinase B), increasing the cells' resis‑
tance to apoptosis and promoting angiogenesis (27,28). Rictor 
overexpression in GC is associated with poor prognosis. In 
particular, Rictor activates caveolin 1 (Cav1) through the Akt 
signaling pathway to inhibit the apoptosis of GC cells (29). 
Liu  et  al  (30) reported that real‑time PCR and western 
blot showed that miR‑153 downregulated the expression of 
Rictor, and this was related to the anti‑tumor effect through 
increasing apoptosis and inhibiting the growth of breast 
cancer cells. A recent study (27) suggested that Rictor is a 
substrate for caspase‑3 and is cleaved during apoptosis. In 
kidney cancer cells, Rictor silencing increases apoptosis and 
concomitantly enhances rasfonin‑induced autophagy (31). 
In ESCC, the downregulation of Rictor expression inhibits 
proliferation and migration and induces ECa‑109 and EC9706 
cell cycle arrest and apoptosis  (32). In vitro experiments 
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showed that Rictor knockdown suppressed the proliferation, 
inhibited the migration and invasion, and induced apoptosis 
of GC cells (33).

Angiogenesis. Rictor regulates the migration and prolifera‑
tion of vascular endothelial cells, two events that are crucial 
for tumor angiogenesis. Wang et al (34) reported that Rictor 
deletion drastically reduced the vascular endothelial growth 
factor (VEGF)‑induced proliferation and tubulogenesis of 
endothelial cells in vitro by inhibiting Akt activity through 
PKCα phosphorylation. Rictor/mTORC2 inhibits the prosta‑
glandin E2‑induced proliferation and migration of vascular 
endothelial cells by regulating Rac and Akt activation. The 
hypoxia‑induced proliferation of endothelial cells depends 
on the involvement of Rictor/mTORC2 in regulating the 
angiogenic mimicry of melanoma through the Akt‑MMP‑2/9 
pathway (35).

Rictor regulates VEGF expression in addition to control‑
ling endothelial cell proliferation and migration  (28). 
Guan et al (36) reported that the tumor suppressor miR‑218 
specifically targets Rictor to inhibit angiogenesis in prostate 
cancer, and this mechanism may be active in other cancer 
tissues, including gastrointestinal cancers. mTORC2 is a 

key signaling point that promotes VEGF‑mediated angio‑
genesis in vascular endothelial cells by regulating Akt and 
PKCα (37). 

Cellular motility. The actin cytoskeleton and microtubules 
are the primary cellular structures that maintain cellular 
morphology and stress (38). Rictor regulates actin cytoskel‑
eton remodeling through PKC, and PKCα is a representative of 
typical PKC. Sarbassov et al (20) found that the Rictor/mTOR 
complex can directly bind and phosphorylate PKCα to regu‑
late the actin cytoskeleton and, consequently, cell motility. 
Guertin et al (39) demonstrated that Rictor binds to PKCα and 
regulates its phosphorylation in Raptor‑, Rictor‑, mLST8‑ and 
mTOR‑knockout mice. PKCζ, a representative of atypical 
PKC and has an important role in regulating actin cytoskeletal 
remodeling. Rictor can directly bind to PKCζ near the cell 
membrane without mTORC2 in human breast cancer. In addi‑
tion, the phosphorylation of PKCζ and its downstream F‑actin 
binding protein cofilin regulate actin remodeling and cell 
motility (40).

Rho GTPases with a molecular weight of 21 kDa are a 
family of small G proteins, including cell division control 
protein 42 homolog (Cdc42), Rac family small GTPase 1 

Figure 1. Alteration frequency of Rictor in different cancers (data from TCGA). Mutation data on Rictor is provided for different cancer types, as indicated. 
TCGA, The Cancer Genome Atlas; CNA, copy number alteration.
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(Rac1) and Ras homolog (Rho) family member A. These 
proteins are responsible for regulating actin remodeling, 
microtubule treadmilling and cell migration. Rictor can 
maintain or enhance Rac1/Cdc42 activity by regulating 
Rho GDP‑dissociation inhibitor 2 (Rho GDI2), a suppressor 
of Rho‑GDP. Thus, Rictor regulates actin remodeling and 
tumor cell motility by regulating Rho GDI2 through an 
mTOR‑independent pathway (41).

Rictor also regulates actin remodeling through molecular 
motors, such as Myosin‑1C (Myo1c). Agarwal et al (42) found 
that in 3T3‑L1 fibroblastic cells, Rictor can directly bind to 
Myo1c, form a stable complex independent of mTORC2 and 
then regulate actin reconstruction by controlling the phos‑
phorylation of paxillin Tyr118. This regulation and that of cell 
motility are not affected by mTORC2 or PI3K inhibitors.

Drug resistance. In patients with GC, higher expression 
of Rictor has been linked to tumor growth and poor prog‑
nosis (12). mTORC1 is sensitive to rapamycin treatment and 
mediates eukaryotic initiation factor 4E‑binding protein‑1 
(4E‑BP1), as well as the phosphorylation and activation of 
p70S6 ribosomal kinase (S6K) (43). In this light, treatment 
with rapamycin or its analogs was observed to inhibit the 
mTORC1/S6K pathway and reduce the negative feedback 
loop of insulin‑like growth factor‑1 receptor (IGF‑1R) 
from S6K to IGF‑1, impairing mTORC2 signaling through 
the complete pathway and leading to Akt activation (44). 
Furthermore, the paradoxical activation of Akt is undesirable, 
as it elicits drug resistance and cell survival, both of which are 
harmful to the effectiveness of mTORC1 inhibitor therapy. 
In other words, the mTOR inhibitor rapamycin could inhibit 
mTORC1 in cancer cells and may lead to Akt phosphoryla‑
tion through mTORC2 activation. Lang et al (45) found that 
rapamycin upregulates IGF‑IR and human epidermal growth 
factor receptor 2 (HER2) in GC and pancreatic cancer 
cells. Furthermore, mTORC2 has been shown to promote 
the activation of IGF‑IR and insulin receptors by activating 
mTOR tyrosine kinase and participate in tumorigenesis (46). 
Rictor downregulation by RNA interference (RNAi) and 
the induction of receptor kinase expression are mediated by 
Akt activation induced by mTORC2. In addition, mTORC2 
inhibition reduces the motility of cancer cells by suppressing 
GSK‑3/NF‑κB activity (45).

4. Effects of Rictor in gastrointestinal cancers

CRC. More than 1.9 million new cases of CRC, including 
anal cancer, and 935,000 deaths are expected in the coming 
years  (1). In general, CRC ranks third in incidence and 
second in mortality; the higher mortality is likely due to 
the development of drug resistance (47). Bellier et al (48) 
used methylglyoxal (MGO), a metabolite of glycolysis that 
promotes tumor growth and metastasis, to induce Akt acti‑
vation and analyzed CRC resistance. The study found that 
MGO induces Akt activation by regulating PI3K/mTORC2 
and heat shock protein (Hsp)27. The premise of that study 
was that cancers with Kirsten rat sarcoma viral oncogene 
homologue (KRAS) mutations exhibit poor response rates 
to therapies and that cells with mutated KRAS under 
MGO stress rely on Akt for their survival, particularly 
when compared to the cells with wild‑type KRAS. Akt is 
activated through PI3K/mTORC2 and Hsp27. An important 
finding was that MGO scavengers can inhibit Akt, which 
may result in the re‑sensitization of KRAS‑mutant cells to 
cetuximab. In another study, the autophagy‑related genes 
Beclin 1, Raptor and Rictor were shown to be associated 
with the development and progression of CRC and multidrug 
resistance (MDR) (49). All three genes were selected due 

Figure 3. Schematic of Rictor signaling pathways that regulate tumor growth, 
survival, metastasis and drug resistance. As indicated, Rictor, as part of 
the mTORC2 pathway, has a central role in several signaling cascades that 
originate at the cell membrane level through various receptors. Once Rictor 
is involved, the effects are apparent with regulation of several downstream 
signaling molecules, with prominent ones being Akt, PKCs, SGK1, VEGF 
and NF‑κB. An overall enhancing effect on protein synthesis, cell growth, 
autophagy, cellular proliferation, angiogenesis, cell motility and drug resis‑
tance was observed. mTORC2, mammalian target of rapamycin complex 2; 
PKC, protein kinase C; SGK1, serum and glucocorticoid‑induced protein 
kinase 1; VEGF, vascular endothelial growth factor.

Figure 2. Consensus putative gene level copy‑number calls of Rictor from 
991 samples with data in both profiles (axes). Data are shown for Rictor 
mRNA expression vs. Rictor consensus putative gene level copy numbers. 
VUS, variant of uncertain significance.
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to their association with autophagy. Immunohistochemistry 
and reverse transcription‑quantitative PCR‑based evalua‑
tion was performed in 279 patients with CRC. These three 
autophagy‑related genes, as well as light chain 3 (LC3) and 
MDR‑1, were significantly upregulated in CRC tissues as 
compared with the adjacent control tissues. Furthermore, 
their expression in patients with lymph node metastasis was 
higher than that in patients without. LC3 was found to be 
positively correlated with Beclin 1 and Rector and negatively 
correlated with Raptor and mTORC in patients with CRC. 
Furthermore, it was revealed that the five‑year survival 
rate of patients with CRC without lymph node metastasis, 
positive/high expression of Rictor, Beclin 1 and LC3, and 
negative Raptor and mTOR expression, was higher than that 
of patients with lymph node metastasis, high Rictor, Beclin 1 
and LC3 expression, and high Raptor and mTOR expression.

Hepatobiliary cancers. Hepatocellular carcinoma (HCC) 
is a leading cause of cancer‑related mortality world‑
wide, due to the lack of precise therapeutic targets  (50). 
mTORC2/Rictor is involved in the pretumor state of HCC and 
participates in the malignant transformation of liver HCC. 
Reyes‑Gordillo et al (51) showed that Akt isomers are acti‑
vated in alcoholic liver disease by increasing the expression 
levels of mTORC2 and genes associated with inflammation, 
proliferation and fibrosis. In addition, mTORC2 affects 
HCC tumorigenesis by regulating metabolic reprogram‑
ming. mTORC2 triggers the synthesis of fatty acids and 
lipids, resulting in liver steatosis and tumorigenesis  (52). 
Xin et al (53) identified that Rictor interacted with Homo 
sapiens actin binding LIM protein 1 (ABLIM1) and regu‑
lated its serine phosphorylation in HCC cells. ABLIM1, 
as a previously unknown phosphorylation target of Rictor, 
induced by Rictor, was indicated to have an important role 
in controlling actin polymerization in HCC cells. Rictor 
knockdown significantly suppressed cell migration and 
actin polymerization. Immunohistochemical results showed 
that mTORC2 is activated in 60% of HCC cases (54). High 
mTORC2 expression was found to be associated with poor 
prognosis of patients with HCC.

Rictor knockdown was observed to inhibit the growth of 
HCC cells in vitro (55). In the liver, Akt has two subtypes: 
Akt1 and Akt2. In c‑Myc‑induced HCC, Akt1 is phosphory‑
lated and activated by mTORC2. Akt1 is the main driver of 
HCC formation and its inhibition can prevent c‑Myc tumor 
development (56). mTORC2 is also involved in liver cancer 
metastasis and drug resistance. Choline kinase α (CHKA) 
is an enzyme associated with liver cancer metastasis and 
epidermal growth factor receptor resistance. Rictor inhibi‑
tion completely eliminated CHKA‑induced enhancement of 
cell migration and invasion. Inhibition of mTORC1/mTORC2 
reduced tumor metastasis, but the inhibition of mTORC1 alone 
by rapamycin exerted no effect on tumor metastasis  (57). 
Dual inhibition of mTORC1/mTORC2 by OSI027 reversed 
the high expression of MDR1 in adriamycin‑induced liver 
cancer, thereby improving the sensitivity of cancer cells to 
adriamycin (58).

Cholangiocarcinoma (CCC) is a highly malignant 
tumor. In a previous study, HCC and CCC cells were 
treated with sorafenib, a multikinase inhibitor of the 

RAF/extracellular‑signal‑regulated kinase (ERK) kinase 
(MEK)/ERK pathway, to study the differences in signaling 
pathways among cell lines. Sorafenib inhibited the 
growth of HCC cells significantly more than that of CCC 
cells but minimally suppressed ERK phosphorylation. 
Correspondingly, sorafenib decreased Akt phosphorylation 
at Ser473 in HCC cells but increased Akt phosphorylation at 
Ser473 and mTORC2 in CCC cells. Rictor downregulation 
by small inhibitory RNA in RBE cells (a CCC‑derived cell 
line) disrupted mTORC2 and inhibited Akt phosphorylation 
at Ser473, which promoted apoptosis and inhibited RBE 
cell proliferation by increasing Forkhead box protein O1. 
Inhibition of mTORC2 activity in the Akt/mTOR signaling 
pathway during sorafenib treatment to prevent the escape 
of the RAF/MEK/ERK pathway may lead to promising 
treatments for CCC (59).

Gastroesophageal cancer. The TCGA database shows that 
the mutation rate of Rictor in patients with esophageal GC is 
~10.5%. Rictor knockdown by short hairpin RNA enhanced 
the inhibitory effect of LY294002 on the in vitro prolifera‑
tion, migration and colony formation of ECa109 and EC9706 
cells, which also caused cell cycle arrest and apoptosis in 
these cells. Furthermore, stable knockdown of Rictor in vivo 
enhanced the antitumor effect of LY294002 by promoting 
apoptosis and inhibiting tumor growth  (60). A previous 
study identified 70.6% (142/201) Rictor positivity in ESCC 
samples (14). Furthermore, the American Joint Committee 
on Cancer staging was found to be positively correlated with 
Rictor expression and negatively associated with survival. 
mTOR overexpression is common in GC. Wang et al  (33) 
found that Rictor protein overexpression and Rictor and 
Helicobacter pylori status may have a prognostic role in GC. 
A previous study by our group showed that Rictor inhibits 
apoptosis of GC cells by activating Cav1 through the Akt 
signaling pathway (29). Seo et al (18) reported that miR‑let‑7A 
regulates autophagy by targeting Rictor in GC cells. In other 
words, Rictor is involved in the autophagy of GC cells. 
Bian et al (7) analyzed 396 GC tissue samples and found 
that patients who were positive for Rictor and p‑Akt (Ser473) 
expression had lower overall and relapse‑free survival rates 
than those negative for Rictor expression. Rictor amplifi‑
cation is also related to tumor size, invasion depth, tumor 
thrombosis and tumor stage. In line with these observations, 
another study showed that targeting Rictor inhibited the 
proliferation and promoted the apoptosis of GC cells (12). 
Furthermore, Kim et al (61) reported that AZD2014, a dual 
mTORC1/2 inhibitor, significantly inhibited the proliferation 
of a Rictor‑amplified patient‑derived cell (PDC) line. Rictor 
knockdown can reverse the sensitivity of AZD2014 to PDCs. 
These results supported the need for further preclinical and 
clinical investigations with AZD2014 in Rictor‑amplified GC 
and highlighted the importance of genomic profiling.

Pancreatic cancer. Pancreatic cancer is a devastating disease 
with the worst outcomes among human cancers (62). Rictor 
blockers reportedly inhibit tumor growth by reducing 
AGC kinase activation and hypoxia‑inducible factor 1‑α 
and VEGF‑A expression  (63). Everolimus, a Food and 
Drug Administration‑approved mTOR inhibitor, can act in 
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conjunction with KPT‑9274, a dual inhibitor of p21‑activated 
kinase 4 (PAK4)‑nicotinamide phosphoribosyltransferase. 
In vitro synergy with everolimus was supported by mTORC2 
modification through the downregulation of Rictor, as 
revealed by molecular analysis. By inhibiting PAK4, 
KPT‑9274 reduced β-catenin activity, indicating the interac‑
tion between Rho GTPases and Wnt signalling in metastatic 
pancreatic neuroendocrine tumors  (64). Zhao  et  al  (65) 
found that mTORC1 and mTORC2 have dual but not redun‑
dant regulatory roles in acinar‑to‑ductal metaplasia and 
early pancreatic cancer by promoting the function of the 
actin‑related protein 2/3 (ARP2/3) complex. The ARP2/3 
complex, as a co‑effector of mTORC1 and mTORC2, bridges 
the gap between oncogenic signaling and actin dynamics 
of pancreatic ductal adenocarcinoma initiation. In addition, 
miR‑155 exacerbates impaired autophagy in pancreatic 
acinar cells treated with caerulein by targeting Rictor (66). 
Gemcitabine in combination with the pro‑apoptotic cyto‑
kine TNF‑related apoptosis‑inducing ligand inhibited the 
survival and induced apoptosis of pancreatic cancer cells. 
This combination therapy significantly increased the levels 
of the low phosphorylated form of tumor suppressor protein 
4E‑BP1. This phenomenon can be attributed to the mTOR 
inhibition resulting from the caspase‑mediated cleavage of 
the Raptor and Rictor components of mTOR (67).

5. Targeted therapy

A previous study showed that rapamycin, a first‑generation 
mTOR inhibitor, is significantly less toxic than other drugs in 
the effective dose range (68). The protective effect of 5‑fluo‑
rouracil‑rapamycin‑cyclophosphamide sequential therapy is 
stronger than that of 5‑fluorouracil‑adriamycin‑cyclophos‑
phamide sequential therapy in 38 mice with colon tumors. 
Rapamycin has been administered for tumor treatment, but 
an increasing number of studies have confirmed that it was 
not as successful as expected in clinical trials, likely due to 
two reasons: First, mTOR complexes have different degrees 
of sensitivity to rapamycin. Since rapamycin is sensitive to 
mTORC1, the drug primarily inhibits the mTORC1/S6K 
pathway and lowers IGF‑1R, which then activates mTORC2 to 
activate Akt (45). The activation of Akt promotes cell survival 
and drug resistance; thus, mTORC1 inhibitor therapy may 
not be beneficial. Furthermore, inhibition of mTORC2 may 
eliminate the adverse signaling effects of mTOR1 inhibitors. 
Further studies are warranted to identify potential therapeutic 
targets of mTORC2 and explore its related molecular mecha‑
nisms in tumors (69‑71). 

The results of multiple clinical trials showed that 
second‑generation ‘rapalogs’ possess effective pharma‑
cokinetic properties and exert anticancer effects  (72). 
Table  I provides a list of different types of mTORC2 
inhibitors to treat CRC (73‑84), liver cancer (85‑99), gall‑
bladder cancer  (100‑102), GC  (61,103‑106), esophageal 
cancer (32,107‑110), pancreatic cancer (111‑119) and biliary 
tract cancer (120‑123). The therapeutic efficacy of rapalogs 
may be diminished by the pro‑survival feedback loops that 
may be induced by the rapalogs' mTORC1‑specific inhibi‑
tion, such as the PI3K‑Akt and PI3K‑RAS‑ERK pathways. 
Therefore, some of the drawbacks of rapalogs may be 

resolved and a higher antitumor activity may be achieved by 
combination therapy or through the use of second‑generation 
mTOR inhibitors, such as dual mTOR/PI3K (124) and selec‑
tive mTORC1/2 inhibitors  (125). However, no particular 
mTORC2 inhibitor has so far been identified. Therefore, it is 
critical to discover a specific medication that blocks Rictor. 
According to an in vitro study, CID613034 prevents the phos‑
phorylation of mTORC2 substrates, such as Akt (Ser‑473), 
N‑myc downstream‑regulated gene 1 (TR‑346) and PKC; 
however, the phosphorylation state of the mTORC1 substrate 
S6K (Thr‑389) or the mTORC1‑dependent negative feedback 
loop are unaffected (126). 

According to Werfel et al  (127), RNAi therapy based 
on nanoparticles successfully silences Rictor. Through the 
intratumoral and intravenous delivery of nanoparticle‑based 
Rictor, tumor‑cell inhibition and Akt phosphorylation were 
observed to be decreased in HER2‑amplified breast cancers. 
HER2‑amplified breast cancer is less likely to spread 
when selective mTORC2 inhibitor therapy is paired with 
the HER2 inhibitor lapatinib. This suggests that mTORC2 
encourages lapatinib resistance. The potential for beneficial 
anticancer effects of mTOR inhibitors in transplant‑associ‑
ated malignancies and other cancers is also highlighted by 
preclinical and clinical findings (128). Preclinical research 
has demonstrated that Rictor controls the biological 
activities of different immune cells, and that its knock‑
down improves the effectiveness of immunotherapy (129). 
Targeting mTOR in immune cells, however, has the potential 
to impair immunological tolerance and cause autoimmune 
disorders (130,131). Failure of immunotherapy is frequently 
caused by autoimmune diseases. A list of clinical trials on 
Rictor inhibitors in gastrointestinal cancer is provided in 
Table II  (132‑136). At present, second‑generation mTOR 
inhibitors include  dual mTOR/PI3K inhibitors, such as 
PI‑103, NVP‑BEZ235 and WJD008; selective mTORC1/2 
inhibitors, such as Torin1, PP242 and PP30, and others, 
such as Ku‑0063794, WAY‑600, WYE‑687 and WYE354, 
which have been reported to be ATP‑competitive mTOR 
inhibitors, as they effectively inhibit mTORC1 and 
mTORC2 (137). Most of these drugs are in clinical trials 
and available data suggests that combination regimens are 
better than monotherapies.

6. Conclusion and future perspectives

Rictor, a key effector of the PI3K/Akt/mTOR pathway, has 
an important role in tumor development and invasion. It 
causes tumor resistance through Akt‑dependent and ‑inde‑
pendent pathways, severely limiting the efficacy of targeted 
drugs. Therefore, Rictor is an important potential target for 
addressing drug resistance. 

Rictor/mTORC2 alterations are more frequent in a 
variety of tumor types. However, the mechanisms of 
Rictor/oncogenic mTORC2 remain to be further clarified. It is 
essential to understand how Rictor/oncogenic mTORC2 relates 
to other PI3K/mTOR signalling pathways. Currently available 
Rictor/mTORC2 inhibitors are second‑generation mTOR 
inhibitors, and their inhibitory effects on Rictor/mTORC2 
comprise dual mTOR/PI3K, selective mTORC1/2 inhibi‑
tion and ATP‑competitive mTOR inhibition. The impacts of 
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the second‑generation mTOR inhibitors on gastrointestinal 
cancers showed better treatment efficacy than monothera‑
pies in in  vitro cell experiments and preclinical studies. 
However, no special inhibitors of Rictor/mTORC2 have been 
identified (138).

At present, PI3K/mTOR inhibitors cannot serve as effective 
treatment agents. The therapeutic benefits of select molecular 
inhibitors may be useful if patients are classified based on their 
Rictor alteration status.
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Colorectal cancer 	 LY3023414	 NCT02124148	 I 	 North America: US	 (132)
Liver cancer	 CC223 	 NCT03591965	 II 	 Asia: China	 Recruiting
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Table I. Different types of mTORC2 inhibitor.

	 Drug classification
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Cancer/cell type	 1	 2	 3	 (Refs.)
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Biliary tract cancer 	 LY3023414	 OSI‑207 RAD001	 ‑	 (120‑123)

Drug classes: 1, mTOR and PI3K dual specificity inhibitors; 2, selective mammalian target of rapamycin complex 1/2 inhibitors; 3, others.
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