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Abstract. Artificial intelligence (AI) has emerged as a 
crucial technique for extracting high‑throughput information 
from various sources, including medical images, patho‑
logical images, and genomics, transcriptomics, proteomics 
and metabolomics data. AI has been widely used in the field 
of diagnosis, for the differentiation of benign and malignant 
ovarian cancer (OC), and for prognostic assessment, with 
favorable results. Notably, AI‑based radiomics has proven 
to be a non‑invasive, convenient and economical approach, 
making it an essential asset in a gynecological setting. The 
present study reviews the application of AI in the diag‑
nosis, differentiation and prognostic assessment of OC. 
It is suggested that AI‑based multi‑omics studies have the 
potential to improve the diagnostic and prognostic predictive 
ability in patients with OC, thereby facilitating the realization 
of precision medicine.
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1. Introduction

Ovarian cancer (OC) is the most common malignancy of the 
female reproductive system and the fifth leading cause of 
cancer‑associated death in women in the USA (1). In 2020, 
~313,956 new cases of OC were diagnosed and ~207,252 
OC‑associated deaths occurred worldwide (2). Despite thera‑
peutic advances, the responses of patients with advanced OC 
remain unsatisfactory, with 70% of patients experiencing 
relapse after treatment. Consequently, the survival rate is 
extremely low, making OC one of the primary causes of 
cancer‑associated mortality in women  (3). In 2020, the 
number of OC‑associated deaths in the USA reached 13,438, 
accounting for 4.2% of all cancer‑related deaths (1).

Histopathologically, 90% of all OC develops from epithe‑
lial cells, and the main subtypes are serous and mucinous (4). 
The World Health Organization (WHO) previously published 
a classification standard for tumors of the female genital 
organs, which categorizes epithelial OC (EOC) into two 
types based on the genetic lineage (5). Type I EOC includes 
low‑grade serous carcinoma, low‑grade endometrioid carci‑
noma, clear cell carcinoma and mucinous carcinoma. Type I 
EOCs develop from benign or borderline ovarian lesions and 
are characterized by slow growth, being typically confined to 
the ovaries and exhibiting large unilateral cystic tumors (6,7). 
The genetic mutations in type I EOCs are more stable, such 
as KRAS, BRAF, CTNNB1, PTEN, PIK3CA, ARID1A, and 
PPP2R1A and ERBB2 mutations, while the TP53 mutation is 
rare (8). Surgery is an effective treatment for early stage type I 
EOCs, but advanced cases are often unresponsive to cytotoxic 
chemotherapy, with targeted drugs, such as BRAF inhibitors, 
showing some efficacy. Type II EOC includes high‑grade 
serous carcinoma, high‑grade endometrioid carcinoma, carci‑
nosarcoma and undifferentiated carcinoma (9). Most patients 
are diagnosed in the first instance with advanced‑stage cancer, 
exhibiting invasion of extra‑ovarian tissues, although type II 
EOCs usually present as small lesions involving both ovaries. 
Furthermore, the tumor volume at the site of metastasis is 
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large, accompanied by ascites and other malignant tumor 
signs. TP53 mutations and CCNE1 amplification are present in 
>80% of patients with type II EOC, while other mutations are 
rare (10). Although traditional platinum‑based chemotherapy is 
effective for the majority of type II EOCs, the overall survival 
(OS) rate of patients remains poor due to a high propensity for 
relapse (11). In summary, the prognosis of patients with type 
I EOCs is generally more favorable than those with type II 
EOCs (12). 

Artificial intelligence (AI), a branch of computer science, 
refers to the ability of computer systems to learn from input 
data. AI is playing an important role in areas of medical 
research, including imaging, pathomics, genomics, tran‑
scriptomics, proteomics and metabolomics. In recent years, 
AI‑based multi‑omics research has been widely conducted with 
a focus on OC diagnosis, benign and malignant differentiation, 
and the prediction of pathological classification, drug efficacy 
and prognosis. Researchers have studied and reviewed the 
clinical application of AI in OC. Shrestha et al (13) reviewed 
AI methods, imaging methods and clinical parameters in 
gynecological tumors, such as endometrial cancer, cervical 
cancer and OC. However, this previous study is limited to 
only discussing the content based on medical images, and 
there is no elaboration on other omics‑based technologies, 
such as pathomics, genomics, transcriptomics and several 
other omics. Similarly, Mikdadi et al (14) reviewed the use 
of AI in the diagnosis and prognosis of OC and pancreatic 
cancer; however, the study did not provide detailed research 
progress of AI in various other omics‑based approaches (14). 
In addition, Shrestha et al (13) reviewed the application of AI 
for the processing of medical images, clinical information 
and biological information of common gynecological tumors. 
Breen et al  (15) reviewed studies on the use of AI for the 
analysis of histopathological images in OC, and evaluated the 
role of various AI models in the diagnosis and prognosis of 
the disease. Notably, most of the aforementioned studies are 
limited to evaluating the application value of uniomics in AI. 
In the present study, a comprehensive review of the workflow 
of AI and its applications in imaging, pathomics, genomics, 
transcriptomics, proteomics and metabolomics is provided.

2. Radiomics 

Radiomics is a non‑invasive approach to extract 
high‑throughput imaging features from the medical images 
of techniques such as computed tomography (CT), magnetic 
resonance imaging (MRI) and ultrasound, and was first 
proposed by Lambin et al in 2012 (16). Medical images contain 
high‑throughput digital information related to tumor patho‑
physiology (17). Moreover, radiomics can be used to extract 
relevant features from images, and combine and supplement 
the findings with clinical information, pathophysiology and 
molecular biological information, so as to improve clinical 
diagnosis, predict the tumor stage and genotype, and assess 
the prognosis (18,19). The major steps of radiomics include 
medical image acquisition, image segmentation, feature 
extraction, feature screening and model building (Fig. 1). 
Radiomics has been widely used in the research of various 
tumors, including thyroid  (20), breast  (21), liver  (22) and 
prostate (23) cancer, and OC (24).

Image acquisition. CT, MRI, positron emission tomography 
(PET) and ultrasound are the most common image acquisition 
methods (25). Images obtained by the same machine equip‑
ment, scanning method and scanning layer thickness need not 
undergo post‑processing during feature extraction. However, 
images obtained using different equipment and acquisition 
conditions require pre‑processing before feature extraction. The 
pre‑processing process includes resampling, standardization and 
high‑pass filtering, to obtain a uniform layer thickness and matrix 
size for feature extraction. Due to the limitations of imaging 
conditions imposed by radiomics, there are few prospective 
studies (26). Most research has been conducted as retrospective 
studies (20‑24), thus the medical images acquired come from 
hospital image storage systems or online databases (27).

Image segmentation. After obtaining medical images, a region 
of interest (ROI) is typically delineated, which involves auto‑
matic segmentation, manual segmentation and semi‑automatic 
segmentation. Automatic segmentation is fast in delineating 
lesions, but poor in identifying them. In addition, the edge of 
tumors on most medical images is vague, and the influence of 
surrounding metastases and accompanying symptoms, such as 
inflammation, on the image easily interferes with the contours 
created by semi‑automatic and automatic segmentation. 
Manual segmentation, on the other hand, is subjective and slow, 
as it depends on the identification of the lesions and drawing 
of contours by clinicians. Semi‑automatic segmentation, based 
on automatic segmentation, allows clinicians to ‘proofread’ the 
delineated edges manually, which can improve the efficiency 
and accuracy of the delineation (28). Currently, ordinary ROI 
mapping software includes MIM (www.mimsoftware.com), 
ITK‑SNAP (www.itksnap.com), 3DSlicer (www.slicer.org) 
and ImageJ (National Institutes of Health) software.

Feature extraction. Radiomics features include the morpho‑
logical, first‑order, second‑order and higher‑order features 
of the tumor itself (29). Morphological features include the 
tumor shape, size, vascular distribution and its relationship 
with surrounding tissue, amongst other features. However, 
each feature alone provides general characteristics of the 
tumor instead of tumor heterogeneity. First‑order features are 
also recognized as intensity features, which are related to the 
distribution of gray‑level intensities in the ROI. The histogram 
represents the number of pixels with a certain gray level in 
the image, reflecting the frequency of each gray level in the 
image. Information such as maximum, minimum, mean, mean 
absolute deviation, median, skewness, standard deviation, 
consistency, variance, energy and entropy can be obtained 
from the intensity histogram. The second‑order features 
include the gray co‑occurrence matrix and the gray run length 
matrix, which can estimate the spatial distribution relationship 
of the image gray value. The higher‑order features include 
the neighborhood gray difference matrix and gray region size 
matrix. The gray difference matrix of the neighborhood can 
evaluate the pixel heterogeneity between the ROI and adjacent 
regions, while the gray region size matrix can evaluate the 
characteristics of homogeneous regions (30).

Feature screening. In the process of feature extraction, several 
features will be identified, which may lead to overfitting when 
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the data set is smaller than the feature set (31). To avoid this 
overfitting of the model, several features must be selected. 
Feature screening is usually achieved using AI or statistical 
methods, and commonly used methods include maximum 
correlation minimum redundancy, principal component 
analysis and least absolute shrinkage and selection operator 
(LASSO) regression, amongst other approaches (32).

Model building. The final step in radiomics is the establishment 
of the model, which can combine patient clinical data, suscep‑
tibility factors and biomarkers with radiomics to create a more 
precise model. For example, a nomogram is often used in the 
modeling of imaging omics (33). The establishment of these 
models has improved the ability of clinicians to diagnose and 
differentiate diseases. Some models can also predict patho‑
logical types and patient outcomes, which contributes to the 
implementation of personalized medicine and modern medi‑
cine. Several studies have combined imaging with genomics, 
transcriptomics, proteomics and metabolomics to build 
diagnostic models, gene expression models and prognostic 
models of diseases (34‑36).

3. AI in the radiomics of OC

Traditional imaging diagnosis relies on a clinician's subjective 
judgment of the visual information (37). However, AI can 
standardize and simplify the process by extracting the avail‑
able information from the images by mimicking the cognitive 
behaviors associated with the human brain (38). Therefore, 
AI can be applied to the process of feature screening and 
model building in radiomics. The significant differences in 
AI diagnostics using imaging depend on who created the AI 
model (39). AI includes machine learning (ML), significant 

data management and information mining, image processing 
and pattern recognition. ML is the approach and core of 
medical AI, including supervised learning, unsupervised 
learning and reinforcement learning  (40,41). Supervised 
learning refers to the application of known cohorts as known 
information of learning, so as to build a classification and 
prediction model for unknown cohorts (42). However, the data 
results are not necessary for the construction of the unsuper‑
vised learning model, and the data can be summarized and 
classified  (43). Reinforcement learning is a computational 
method to understand and automatically process goal‑oriented 
learning and decision‑making problems, and there are several 
advantages, such as direct interaction with the environment 
and autonomous learning without the need for emulated super‑
visory signals for modeling (44). Notably, ML is an essential 
branch of AI, and the major procedures include data collection 
and processing, model training and optimization, and model 
evaluation, amongst others (45). ML can establish models by 
converting medical images into features or labels and subse‑
quently performing a mapping from features to labels using 
algorithms. ML primarily includes logistic regression, arti‑
ficial neural networks (ANNs), support vector machines and 
deep learning convolutional neural networks (DCNNs) (46). 
Deep learning (DL) is a subset of ML, which can use multiple 
ANNs to solve complex problems based on the structure of 
brain neurons. Neural networks can link dependent and inde‑
pendent variables together without prior knowledge to detect 
patterns and nonlinear interactions in complex data  (47). 
CNNs, a subset of AI and DL, are a special type of computa‑
tional model the principle of which is to imitate neurons and 
synapses in the human brain (Fig. 2) (47). A neural network 
with more hidden layers is defined as a deep neural network. DL 
can solve various classification and prediction problems using 

Figure 1. Flow chart of radiomics. The process of radiomics includes image acquisition, ROI segmentation, feature extraction, feature screening and model 
building. ROC and calibration curves are often used to evaluate the model performance in the process of model building. ROI, region of interest; ROC, 
receiver operating characteristic. The statistical images (feature screening and model building) are from Dr Yanli Wang (unpublished data).
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deep neural networks; it can also identify features from data 
automatically and avoiding manual feature selection, which is 
an apparent advantage compared with traditional ML (48). 

Radiomics, ML and DL are not independent individuals, 
but are intricately intertwined for the most part. The modeling 
process in radiomics usually relies on DL (49). AI has been 
widely used in the diagnosis of diseases, the differentiation 
of benign and malignant tumors, and the prediction of thera‑
peutic effects (50) (Fig. 3).

Identification of benign and malignant tumors. The compre‑
hensive evaluation of ovarian tumors, both benign and 
malignant, requires a preliminary judgment by clinicians 
based on symptoms, and laboratory and imaging examina‑
tions. At present, the gold standard for determining benign 
and malignant ovarian tumors is still pathological analysis 
of a puncture biopsy or postoperative pathological examina‑
tion. However, the methods are invasive, and puncture biopsy 
carries a certain risk of needle path metastasis (51). Therefore, 
a number of studies have explored the application of radiomics 
in the identification of benign and malignant tumors. For 
example, Wang et al (52) retrospectively collected CT images 
of patients with EOC from multiple centers to establish a CT 
radiomics model that could distinguish high‑grade serous OC 
(HGSOC). The areas under the curve (AUCs) were 0.837 (95% 
CI, 0.835‑0.838) for the training cohort and 0.836 (95% CI, 
0.833‑0.840) for the testing cohort. The study confirmed that the 
radiomics model is important for the individualized treatment 
and prognostic evaluation of patients. Similarly, Li et al (53) 
reported the effectiveness of radiomics. This previous study 
established a radiomics model to identify benign and malig‑
nant ovarian tumors based on 143 CT images. The AUCs for 
both the training set (0.88) and the test set (0.87) were high, 
which confirmed the discriminative ability of the model. A 
nomogram combining clinical information and serum markers 
was also created. Saida et al (54) reported that the established 
CNN model of OC diagnosis based on MRI also showed a 
good diagnostic effect. Moreover, it was demonstrated that the 
differential model based on radiomics had a higher average 
diagnostic efficiency than the radiologist (internal data set: 
88.8 vs. 85.7%; external validation data set: 86.9 vs. 81.1%), and 
the combined use of the model could improve the efficiency of 
the radiologist. The accuracy [87.6% (95% CI, 85.0‑90.2) vs. 

78.3% (95% CI, 72.1‑84.5); P<0.0001] and sensitivity [82.7% 
(95% CI, 78.5‑86.9) vs. 70.4% (95% CI, 59.1‑81.7); P<0.0001] 
of DCNN‑assisted diagnosis were higher than the values for the 
radiologists alone (55). Wang et al (56) also explored the MRI 
of 201 patients with borderline ovarian tumors and 99 patients 
with EOC, and established a differential diagnosis model based 
on DL. The results revealed that the accuracy of the AI model 
was higher than that of the radiologists. A recent study showed 
that the models based on DL had an AUC of 0.93 (95% CI, 
0.85‑0.97) for differentiating malignant from benign ovarian 
tumors, which was comparable with the Ovarian‑Adnexal 
Reporting and Data System (O‑RADS) (57) (AUC, 0.92; 95% 
CI, 0.85‑0.97; P=0.88) and expert assessment (AUC, 0.97; 95% 
CI, 0.91‑0.99; P=0.07) (58). The models based on DLdecision, 
DLfeature, O‑RADS and expert assessment achieved sensitivi‑
ties of 92, 92, 92 and 96%, respectively, and specificities of 80, 
85, 89 and 87%, respectively, for malignancy. Therefore, the 
models based on DL may distinguish malignant from benign 
ovarian tumors with a diagnostic performance comparable to 
expert subjective and Ovarian‑Adnexal Reporting and Data 
System assessment. In addition, the specificity and sensitivity 
of the models established by different AI algorithms for the 
identification of ovarian tumors are also different (58). Other 
researchers have also shown that AI models based on ultrasonic 
images have high accuracy and sensitivity for the identification 
of OC, and the differentiation of benign and malignant tumors. 
Furthermore, the diagnostic efficacy is similar to that of ultra‑
sound experts (59,60).

Pathological classification. EOC is classified into type I 
and type II according to the classification standard of female 
reproductive organ cancers from the WHO in 2014 (61). Due 
to the difference in treatment and prognosis between type I 
and type II EOC, it is necessary to classify the pathological 
type after a diagnosis of OC (5). In this regard, Tang et al (62) 
investigated ultrasonic images of patients with EOC (n=154), 
and divided them into type I and type II EOC according to 
the pathology. The seven features with the greatest differences 
were screened out using LASSO regression ten‑fold cross‑vali‑
dation. As a result, an identifiable model was established with 
satisfactory predictive efficiency, with AUCs of 0.817 and 
0.731 for the training and test sets, respectively. Furthermore, 
radiomics can be utilized to evaluate tumor heterogeneity 
in addition to predicting pathological types. Xu et al  (63) 
analyzed the MRI results of patients with EOC (n=146), and 
established a model and nomograms for distinguishing EOC 
from borderline ovarian tumors and EOC subtypes using 
logistic regression. The study mapped not only the solid 
components of the tumor tissue, but also the overall region of 
the tumor tissue, providing a more complete evaluation of the 
tumor heterogeneity. Jian et al (64) conducted a multicenter 
retrospective analysis of MRI results in patients with EOC 
(n=294) and established a radiomics model that distinguished 
type I from type II by extracting relevant radiomics features 
from axial sequences of T2‑weighted images with fat satura‑
tion (T2WIFS), diffusion‑weighted imaging (DWI), apparent 
diffusion coefficient and contrast enhanced (CE)‑T1WI. The 
model showed good diagnostic performance in both internal 
and external validation cohorts, with AUCs of 0.806 and 
0.847, respectively. Additionally, an occlusion experiment was 

Figure 2. Relationship of the AI algorithm. The internal inclusion relation‑
ship of the AI algorithm, and the paratactic relationship with radiomics. 
AI, artificial intelligence; ML, machine learning; DL, deep learning; CNN, 
convolutional neural network. 
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conducted to locate the critical areas of the image for model 
building and diagnosis. The results showed that the most 
important area used to identify type I and type II EOCs was 
located at the junction between solid and cystic components, 
and in the area with a low density of solid components in 
T2WIFS. This conclusion may provide a basis and guidance 
for puncture diagnosis of tumors and pathological sampling.

Gene mutation state. Studies have demonstrated that ~50% 
of EOC cases carry homologous recombination repair 
defects, which are primarily caused by mutations in the 
breast cancer susceptibility gene (BRCA). BRCA can partici‑
pate in the repair of DNA double‑strand breaks during the 

process of homologous recombination repair, and is a crucial 
tumor suppressor gene (65,66). Patients with advanced OC 
accompanied by BRCA mutations are more responsive to 
platinum‑based chemotherapy drugs, exhibiting higher 
objective response rates and survival rates  (66‑69). The 
5‑year survival rate and progression‑free survival (PFS) 
rates of patients with BRCA mutation‑positive OC are higher 
than those without mutations  (70). Moreover, BRCA1/2 
mutation‑positive patients have also shown good reactivity 
when treated with platinum‑based agents in patients with a 
recurrent case of OC (71). Therefore, it is essential to make 
a definitive diagnosis of any BRCA mutations before treat‑
ment in order to aid the clinical planning and evaluation of a 

Figure 3. AI in omics. AI is widely used in radiomics, pathomics, genomics, transcriptomics, proteomics and metabolomics. These omics can be used in 
a number of clinical applications, including differential diagnosis, pathological classification, predicting gene state, tumor metastasis, prognosis and drug 
response. 
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patient's prognosis. Current guidelines from different scientific 
societies also recommend the genetic testing of BRCA1/2 for 
newly diagnosed patients with a non‑mucinous EOC (72). 
Although puncture sampling is commonly used to detect 
BRCA gene status in patients, it is an invasive method that may 
cause cancer cell metastasis along the puncture needle tract 
during the process. Furthermore, the gene expression within 
tumors may have certain heterogeneity (73), and the puncture 
sampling method can only perform genetic identification on 
some of the tissues, instead of evaluating the overall genetic 
diversity of the entire tumor (74). Additionally, genetic testing 
is costly and time‑consuming (75). Radiomics has emerged as 
a promising alternative to genetic testing in recent years. A 
number of studies have applied radiomics to assess the gene 
state of OC. Meier et al  (73) retrospectively collected the 
CT images from 88 patients with HGSOC, and extracted the 
texture features. The results showed that the radiomics features 
were significantly correlated with the prognosis of the patients, 
but not with the status of BRCA mutations, which may be due 
to the small number of patients assessed. In addition to BRCA, 
Ki‑67 was also significantly correlated with the recurrence and 
prognosis of OC. Wang et al (76) analyzed the PET/CT images 
of patients with HGSOC (n=161). The radiomics features of the 
whole tumor area were extracted based on a Habitat method 
and a model for predicting the Ki‑67 status of OC was estab‑
lished. The results verified that radiomics could predict the 
expression of Ki‑67 accurately and might be a novel marker to 
replace Ki‑67. Additionally, the Habitat model could stratify 
prognosis more efficiently (P<0.05).

Metastasis. Advanced OC is typically accompanied by 
intra‑abdominal diffusion and distant metastasis at first diag‑
nosis. It has been shown that the 5‑year survival rate of patients 
with OC is only 20‑45% (77). Therefore, it is essential to detect 
metastases early, as this affects the treatment used and the 
management from stage to stage. However, the positive rate for 
detection of small metastases by conventional means remains 
poor (78). A novel approach, radiomics, has been shown to 
predict metastasis more accurately (79). Ai et al (80) explored 
the CT images of patients with OC (n=101), and identified nine 
radiomic features for screening from a total of 184. The results 
revealed that the radiomics model and the comprehensive 
model combined with age and cancer antigen 125 levels could 
be used to predict the metastatic status. Similarly, MRI‑based 
research has validated the role of radiomics in predicting OC 
metastasis. Yu et al (81) established a nomogram for predicting 
peritoneal metastasis based on radiomics characteristics and 
clinical data from FS‑T2WI, DWI and dynamic CE‑MRI 
images of 86 patients with OC. The comprehensive nomogram 
(AUC, 0.902) combining radiomics characteristics and clini‑
copathological risk factors showed a better diagnostic effect 
than the clinical model (AUC, 0.858) and the radiomics model 
(AUC, 0.846). These findings suggest that the radiomics model 
is a promising method for predicting OC metastasis, particu‑
larly small metastases, and may thus be used to improve the 
detection rate.

Postoperative residue and prognosis. In total, >70% of patients 
with OC are diagnosed at an advanced stage (82), and the 
current standard treatment involves initial tumor cell reduction 

and platinum‑based chemotherapy. However, the effectiveness 
of initial tumor cell reduction and patient response to chemo‑
therapy drugs vary due to individual differences (such as gene 
mutation status and physiological status) and tumor heteroge‑
neity. Therefore, it is important to predict a patient's response 
before and after treatment (83). Radiomics has emerged as a 
promising tool for predicting the postoperative tumor residual 
status of patients and the risk of recurrence after receiving 
chemotherapy drugs, which will be conducive to the selec‑
tion of chemotherapeutic drugs, chemotherapeutic methods 
and the formulation of individualized follow‑up periods (84). 
Lu et al (85) applied ML to obtain the radiomic prognostic 
vector (RPV) for 364 patients with EOC. It was reported that 
RPV could be used to assess patient outcomes in discovery 
datasets, which was well validated in validation datasets and 
the Cancer Genome Atlas validation dataset. Meier et al (73) 
extracted CT features from pre‑treatment images of 88 patients 
with HGSOC and found that these features were relevant to 
patient PFS and OS time. A study by Hong et al (86) also veri‑
fied the ability of a model to predict OS in patients with OC. CT 
images of serous OC were selected from the cancer imaging 
archive as the model training set, while images collected in 
the study hospital were used as the validation set, and three 
radiomics features were finally screened out. Furthermore, the 
nomogram, in combination with clinical data, was established 
as a model to evaluate the OS with serous OC, which will 
be helpful for the formulation of treatment strategies and the 
prognostic evaluation of patients. Wei et al (87) verified the 
relationship between PFS and the radiomics characteristics 
of advanced HGSOC through Kaplan‑Meier survival analysis 
and a Cox proportional risk model, and established a nomo‑
gram for predicting the recurrence risk of HGSOC. Notably, 
not only did the model have a good predictive effect, but other 
DL models based on MRI and CT images did also (88,89). 
Compared with CT and MRI, ultrasound is more convenient 
and economical. In recent years, ultrasonography has been 
used to establish a prognostic model for OC. In one study, 
111 patients with EOC were examined by transvaginal ultra‑
sonography, and the characteristics of ultrasonography were 
extracted to establish a comprehensive PFS prediction model 
combined with clinical variables (90). Additionally, AI can 
predict the length of postoperative hospital stay for patients 
with HGSOC (91), which may contribute to the individualized 
treatment and management plans in clinical practice.

Response to chemotherapy. Lei  et  al  (92) included MRI 
(CE‑T1WI and T2WI) of 93 patients with EOC who had 
received platinum‑based chemotherapy (≥4 cycles), and estab‑
lished two different models based on the primary tumor or 
the entire abdomen as areas of interest. Furthermore, 1,024 
features were extracted using the pre‑trained CNN model. The 
results showed that the whole abdominal DL model based on 
MRI was effective in predicting the sensitivity of patients with 
EOC to platinum‑based therapy (Table I).

Identification of whole slide images based on DL. A patho‑
logical biopsy is the gold standard for diagnosing EOC, and it 
is also a mandatory examination mode during postoperative 
chemotherapy in patients with advanced OC. The clinician 
can make a more individualized treatment plan for the patient 
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based on the pathological findings. The traditional pathological 
diagnostic method is to stain the tissue with hematoxylin and 
eosin (H&E) and observe samples under a microscope (93). 
However, the method of diagnosis depends on the experi‑
ence of the pathologists and is thus subjective. Furthermore, 
the storage of slices is a difficult problem after pathological 
diagnosis, and there are certain limitations in remote consulta‑
tion. Whole slide imaging (WSI) can transform pathological 
tissue sections into high‑resolution digital images using a 
computer and full‑slice digital scanning technology. WSI 
has solved the limitations of traditional diagnostic methods, 
and has improved the efficiency and accuracy of pathological 
diagnosis (94). DL has been widely used in the field of medical 
pathological image recognition, where it can improve the 
degree of digitization of pathology and also plays a vital role 
in the analysis of pathological images (95).

Prediction of different pathological subtypes. The therapeutic 
scheme of OC is dependent on its pathological subtypes, which 
require different chemotherapy drugs and treatment plans. 
The identification of the subtypes predominantly relies on 
the subjective judgment of pathologists; however, the interob‑
server consistency of pathologists is often low (Cohen's κ, 
0.54‑0.67) (96). Farahani et al (96) developed four deep CNN 
algorithms to identify pathological subtypes of OC using WSI 
in 545 patients. The highest scoring CNN model showed high 
concordance with pathologists in diagnosing OC pathological 
subtypes [81.38% concordance (Cohen's κ, 0.7378) in the 
training set and 80.97% concordance (Cohen's κ, 0.7547) in the 
external dataset], indicating that CNN may be used as an auxil‑
iary diagnostic model to improve the efficiency of diagnosing 
OC pathological subtypes. In addition, the model established 
based on WSI had good efficacy in predicting the effect of 
OC chemotherapy drugs. Wang et al (97) developed a weakly 
supervised DL to accurately predict the therapeutic effect 
of bevacizumab in patients with OC by analyzing the entire 
image of histological H&E staining. This method can guide 
clinical treatment decisions by screening out patients who are 
likely to show a poor response. A Cox proportional risk model 
showed that the model could predict patients at a higher risk 
of recurrence due to a poor treatment response compared with 
patients with a more favorable treatment response. The afore‑
mentioned results indicated that the combination of WSI and 
DL in pathology could effectively extract relevant information 
from high‑throughput pathological data, and provide more 
instructive information for improved precision treatment.

Prediction of the mutation status of a gene. Different patho‑
logical types of EOCs exhibit varying gene mutation sites, 
with ~50% of EOCs displaying homologous recombination 
repair defects. Homologous recombination repair defects are 
primarily caused by mutations in the BRCA gene, which plays 
a crucial role in the DNA double‑strand break repair process 
during homologous recombination repair and is considered an 
important tumor suppressor gene (66). Patients with advanced 
OC carrying BRCA1/2 mutations demonstrate increased 
sensitivity to platinum‑based chemotherapy drugs, and exhibit 
higher objective remission rate and survival rates following 
treatment with platinum‑based drugs. Furthermore, the use of 
poly(ADP‑ribose) polymerase inhibitors after platinum‑based 

chemotherapy can significantly reduce the recurrence rate 
and the mortality rate of patients with OC (69). Notably, a 
DL model can be employed to identify gene mutations by 
analyzing the H&E‑stained pathological images of tumors. 
Ho et al (98) utilized DL to analyze the WSI of patients with 
OC and developed a model that could predict the mutation 
status of the BRCA gene mutation in HGSOC. These studies 
demonstrate the potential of DL based on WSI in quantifying 
tumor histopathological features and related gene behavior. 
Nero et al (99) applied weakly supervised learning based on DL 
to analyze the WSI images of 66 patients with HGSOC. While 
the model exhibited zero errors in the training set, its perfor‑
mance in the verification set was mediocre, with an AUC of 
0.59. In addition, this model was also used to predict PFS, with 
an AUC of 0.71, indicating a good prognostic performance.

Predict the efficacy and prognosis of drug therapy. Currently, the 
standard treatment for EOC is cytoreductive surgery combined 
with platinum‑based chemotherapy, but patients with different 
pathological types of OC have different sensitivity levels to 
platinum‑based chemotherapy. Laury et al (100) utilized the 
WSI of patients with HGSOC who underwent platinum‑based 
chemotherapy with different resultant effects in order to estab‑
lish a CNN model for predicting the effect of platinum‑based 
chemotherapy. The CNN‑based model was effective in distin‑
guishing patients with different responses to platinum‑based 
drugs, exhibiting both high sensitivity (73%) and specificity 
(91%). With the occurrence of chemotherapy resistance and 
refractory diseases, the sensitivity of platinum‑based chemo‑
therapy has declined (101). Bevacizumab, an antibody against 
vascular endothelial growth factor, has been used in the first‑ 
and second‑line treatments of OC. Wang et al (102) collected 
the WSI results of patients with EOC and peritoneal serous 
papillary carcinoma, and established a DL model to predict 
the therapeutic effect of bevacizumab. The results showed that 
the new model could predict the effects of treatment without 
guidance or prior knowledge of the pathology. The proposed 
DL model could effectively distinguish patients who would 
respond well from the patients whose recurrence rate would 
be low after treatment and those whose disease was likely to 
deteriorate after treatment. Wu et al (103) appraised the WSI 
results of patients with OC through DL, and developed risk 
scores for these patients. The AUC of the time‑dependent ROC 
curve verified the good predictive performance of risk scores. 
Additionally, the researchers analyzed the differential survival 
rate of patients with different homologous repair deficiency 
states using the aforementioned model. The DL model not 
only facilitated overall risk stratification of patients with OC, 
but also distinguished between different subtypes in terms 
of the prognosis, which could be used to provide a basis for 
targeted therapy for patients with OC (Table II).

4. Other AI‑based omics in OC

Genomics. DL models based on various other omics‑based 
approaches have also emerged in addition to radiography 
and pathological images, and these may also play a role 
in exploring the occurrence and development of diseases. 
Guo et al (104) applied DL to analyze multi‑omics OC data 
using three datasets from the Gene Expression Omnibus 
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database. Furthermore, a DL framework that could integrate 
multi‑omics data and denoising autoencoder to identify OC 
subtypes was established. The results showed that this method 
could be used to identify OC subtypes at the molecular level 
with satisfactory efficiency. In addition, differential expression 
analysis and weighted gene co‑expression network analysis 
were used to screen out target genes associated with specific 
molecular subtypes. Finally, 34 biomarkers and 19 Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
associated with OC were identified. Similarly, Ye et al (105) 
identified the pathogenic genes of OC based on omics data 
and DL. CNN was used to predict OC‑related genes, and the 
AUC and the area under precision‑recall curve of the model 
were 0.761 and 0.788 respectively, which proved the accuracy 
and effectiveness of the model. Moreover, gene set enrichment 
analysis revealed 245 novel OC pathogenic genes and 10 asso‑
ciated KEGG pathways. Cell‑free tumor DNA (cfTDNA) is 
also associated with the occurrence and development of OC. 
cfTDNA can be released along with the occurrence of cell 
necrosis and apoptosis, and the release of cancer cells. The 
levels of circulating cell‑free DNA (cfDNA) in patients are 
high, and mostly originate from tumor cells (106). Therefore, 
Bahado‑Singh et al (106) performed genome‑wide DNA meth‑
ylation analysis of cytosine markers and used AI to identify the 
most predictive epigenetic markers in the genome. The results 
revealed that the AI model based on cyclic cfDNA cytosine 
methylation changes is effective in diagnosing OC (AUC, 1.00; 
sensitivity, 100%; specificity, 88%).

Transcriptomics. Aghayousefi et al (107) applied a DL model 
to screen microRNAs (miRNAs/miRs) related to OC occur‑
rence, and found that miR‑1914, miR‑203, miR‑135a‑2, miR‑149 
and miR‑9‑1 were the risk factors associated with OC with 
the highest frequency. Moreover, the study suggested that the 
miRNAs may participate in the epithelial‑mesenchymal trans‑
formation of cancer cells, as well as the heterogeneous and 
adaptive processes of tumors. Hamidi et al (108) compared the 
differences in miRNA expression between patients with OC and 
healthy individuals using the public data platform GSE106817 
dataset (109). The study screened out 10 miRNAs regulated in 
OC samples and developed a clinical prediction model using 
ML (logistic regression, random forest, artificial neural network, 
XGBoost and decision tree). ROC analysis showed that the 
miRNA model exhibited a good diagnostic performance, and 
the AUC of the first four prediction models was 100%, which 
indicated that the OC diagnostic model based on the serum 
miRNA spectrum may have important clinical value. 

Metabolomics. Irajizad et al (110) performed metabolomic 
analysis on the serum samples from 101 patients with serous 
and non‑serous OC, and 134  patients with benign pelvic 
masses. A total of seven cancer‑related metabolites were 
screened using DL. The performance of DL for OC diagnosis 
in the early stage was significantly improved when combined 
with the risk of ovarian malignancy algorithm.

5. Conclusions and future perspectives 

Thus far, AI‑based radiomics has shown satisfactory efficiency 
in the diagnosis, differentiation and prognostic prediction of 
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OC. At the same time, the combination of AI models and 
traditional diagnoses from clinicians can improve the accu‑
racy and efficiency of diagnosis, and may improve diagnostic 
systems in the future. In addition, the prediction of pathological 
typing and gene status may serve as a type of ‘virtual biopsy’, 
which could reduce the need for invasive tests on patients in 
the future. However, there remain several challenges in the 
clinical application of AI in OC. Firstly, while there are an 
increasing number of multi‑omics studies based on genomics, 
transcriptomics and proteomics, there are fewer multi‑omics 
studies combining radiomics and pathomics, which to some 
extent limits the clinical application of AI. The integration of 
multi‑omics data has the potential to improve patient survival 
and facilitate future precision medicine approaches. Secondly, 
there are several AI algorithms, and current research only 
builds models around one or a few algorithms. It is neces‑
sary to conduct a multi‑center comparison of these models 
to select the best AI models for general clinical application, 
so this scientific research can be truly implemented in a 
clinical setting. The number of clinical samples collected by 
general research institutes is small and often imbalanced in 
terms of representativeness of the subsequent feature extrac‑
tion, which is a challenge for AI data processing. In future 
studies, considerably larger cohorts from multiple centers and 
indeed cohorts from multiple countries are needed to increase 
the validity of any models. Additionally, it is necessary to 
continuously innovate and improve the algorithms to opti‑
mize existing models. Finally, the clinical applications based 
on AI models are mostly concentrated in thyroid diseases, 
breast diseases and liver diseases, and the research of other 
systems remains predominantly in the theoretical stage. In 
future work, these clinical models should be used in clinical 
prospective studies to assist clinicians in diagnostic and prog‑
nostic analyses. The problems and effects encountered by 
clinicians when applying artificial intelligence models should 
then be summarized, and the models constantly optimized. 
Advances in AI‑based approaches will improve diagnostic 
accuracy, accelerate the diagnostic process, and play a key 
role in assisting doctors in decision‑making and intelligent 
monitoring in the future.

In conclusion, AI has emerged as a powerful tool for the 
processing of large datasets, and is being extensively utilized in 
the development of diverse omics models for OC. Multi‑omics 
analysis, including imaging, pathomics, genomics, metabolo‑
mics and proteomics, has demonstrated potential in enhancing 
the accuracy of OC diagnoses, the differentiation between 
benign and malignant cases, and the prediction of pathological 
types and prognosis. The integration of multi‑omics data 
has the potential to improve patient survival and facilitate 
precision medicine in the future.
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