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Abstract. Artificial intelligence (AI) has emerged as a
crucial technique for extracting high-throughput information
from various sources, including medical images, patho-
logical images, and genomics, transcriptomics, proteomics
and metabolomics data. Al has been widely used in the field
of diagnosis, for the differentiation of benign and malignant
ovarian cancer (OC), and for prognostic assessment, with
favorable results. Notably, Al-based radiomics has proven
to be a non-invasive, convenient and economical approach,
making it an essential asset in a gynecological setting. The
present study reviews the application of Al in the diag-
nosis, differentiation and prognostic assessment of OC.
It is suggested that Al-based multi-omics studies have the
potential to improve the diagnostic and prognostic predictive
ability in patients with OC, thereby facilitating the realization
of precision medicine.
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1. Introduction

Ovarian cancer (OC) is the most common malignancy of the
female reproductive system and the fifth leading cause of
cancer-associated death in women in the USA (1). In 2020,
~313,956 new cases of OC were diagnosed and ~207,252
OC-associated deaths occurred worldwide (2). Despite thera-
peutic advances, the responses of patients with advanced OC
remain unsatisfactory, with 70% of patients experiencing
relapse after treatment. Consequently, the survival rate is
extremely low, making OC one of the primary causes of
cancer-associated mortality in women (3). In 2020, the
number of OC-associated deaths in the USA reached 13,438,
accounting for 4.2% of all cancer-related deaths (1).
Histopathologically, 90% of all OC develops from epithe-
lial cells, and the main subtypes are serous and mucinous (4).
The World Health Organization (WHO) previously published
a classification standard for tumors of the female genital
organs, which categorizes epithelial OC (EOC) into two
types based on the genetic lineage (5). Type I EOC includes
low-grade serous carcinoma, low-grade endometrioid carci-
noma, clear cell carcinoma and mucinous carcinoma. Type I
EOC:s develop from benign or borderline ovarian lesions and
are characterized by slow growth, being typically confined to
the ovaries and exhibiting large unilateral cystic tumors (6,7).
The genetic mutations in type I EOCs are more stable, such
as KRAS, BRAF, CTNNBI, PTEN, PIK3CA, ARIDIA, and
PPP2R1A and ERBB2 mutations, while the TP53 mutation is
rare (8). Surgery is an effective treatment for early stage type I
EOC:s, but advanced cases are often unresponsive to cytotoxic
chemotherapy, with targeted drugs, such as BRAF inhibitors,
showing some efficacy. Type II EOC includes high-grade
serous carcinoma, high-grade endometrioid carcinoma, carci-
nosarcoma and undifferentiated carcinoma (9). Most patients
are diagnosed in the first instance with advanced-stage cancer,
exhibiting invasion of extra-ovarian tissues, although type II
EOC:s usually present as small lesions involving both ovaries.
Furthermore, the tumor volume at the site of metastasis is
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large, accompanied by ascites and other malignant tumor
signs. TP53 mutations and CCNEI1 amplification are present in
>80% of patients with type Il EOC, while other mutations are
rare (10). Although traditional platinum-based chemotherapy is
effective for the majority of type II EOCs, the overall survival
(OS) rate of patients remains poor due to a high propensity for
relapse (11). In summary, the prognosis of patients with type
I EOCs is generally more favorable than those with type II
EOCs (12).

Artificial intelligence (AI), a branch of computer science,
refers to the ability of computer systems to learn from input
data. Al is playing an important role in areas of medical
research, including imaging, pathomics, genomics, tran-
scriptomics, proteomics and metabolomics. In recent years,
Al-based multi-omics research has been widely conducted with
a focus on OC diagnosis, benign and malignant differentiation,
and the prediction of pathological classification, drug efficacy
and prognosis. Researchers have studied and reviewed the
clinical application of AI in OC. Shrestha er al (13) reviewed
Al methods, imaging methods and clinical parameters in
gynecological tumors, such as endometrial cancer, cervical
cancer and OC. However, this previous study is limited to
only discussing the content based on medical images, and
there is no elaboration on other omics-based technologies,
such as pathomics, genomics, transcriptomics and several
other omics. Similarly, Mikdadi et al (14) reviewed the use
of Al in the diagnosis and prognosis of OC and pancreatic
cancer; however, the study did not provide detailed research
progress of Al in various other omics-based approaches (14).
In addition, Shrestha et al (13) reviewed the application of Al
for the processing of medical images, clinical information
and biological information of common gynecological tumors.
Breen et al (15) reviewed studies on the use of Al for the
analysis of histopathological images in OC, and evaluated the
role of various Al models in the diagnosis and prognosis of
the disease. Notably, most of the aforementioned studies are
limited to evaluating the application value of uniomics in Al.
In the present study, a comprehensive review of the workflow
of Al and its applications in imaging, pathomics, genomics,
transcriptomics, proteomics and metabolomics is provided.

2. Radiomics

Radiomics is a non-invasive approach to extract
high-throughput imaging features from the medical images
of techniques such as computed tomography (CT), magnetic
resonance imaging (MRI) and ultrasound, and was first
proposed by Lambin efalin 2012 (16). Medical images contain
high-throughput digital information related to tumor patho-
physiology (17). Moreover, radiomics can be used to extract
relevant features from images, and combine and supplement
the findings with clinical information, pathophysiology and
molecular biological information, so as to improve clinical
diagnosis, predict the tumor stage and genotype, and assess
the prognosis (18,19). The major steps of radiomics include
medical image acquisition, image segmentation, feature
extraction, feature screening and model building (Fig. 1).
Radiomics has been widely used in the research of various
tumors, including thyroid (20), breast (21), liver (22) and
prostate (23) cancer, and OC (24).

Image acquisition. CT, MRI, positron emission tomography
(PET) and ultrasound are the most common image acquisition
methods (25). Images obtained by the same machine equip-
ment, scanning method and scanning layer thickness need not
undergo post-processing during feature extraction. However,
images obtained using different equipment and acquisition
conditions require pre-processing before feature extraction. The
pre-processing process includes resampling, standardization and
high-pass filtering, to obtain a uniform layer thickness and matrix
size for feature extraction. Due to the limitations of imaging
conditions imposed by radiomics, there are few prospective
studies (26). Most research has been conducted as retrospective
studies (20-24), thus the medical images acquired come from
hospital image storage systems or online databases (27).

Image segmentation. After obtaining medical images, a region
of interest (ROI) is typically delineated, which involves auto-
matic segmentation, manual segmentation and semi-automatic
segmentation. Automatic segmentation is fast in delineating
lesions, but poor in identifying them. In addition, the edge of
tumors on most medical images is vague, and the influence of
surrounding metastases and accompanying symptoms, such as
inflammation, on the image easily interferes with the contours
created by semi-automatic and automatic segmentation.
Manual segmentation, on the other hand, is subjective and slow,
as it depends on the identification of the lesions and drawing
of contours by clinicians. Semi-automatic segmentation, based
on automatic segmentation, allows clinicians to ‘proofread’ the
delineated edges manually, which can improve the efficiency
and accuracy of the delineation (28). Currently, ordinary ROI
mapping software includes MIM (www.mimsoftware.com),
ITK-SNAP (www.itksnap.com), 3DSlicer (www.slicer.org)
and ImageJ (National Institutes of Health) software.

Feature extraction. Radiomics features include the morpho-
logical, first-order, second-order and higher-order features
of the tumor itself (29). Morphological features include the
tumor shape, size, vascular distribution and its relationship
with surrounding tissue, amongst other features. However,
each feature alone provides general characteristics of the
tumor instead of tumor heterogeneity. First-order features are
also recognized as intensity features, which are related to the
distribution of gray-level intensities in the ROI. The histogram
represents the number of pixels with a certain gray level in
the image, reflecting the frequency of each gray level in the
image. Information such as maximum, minimum, mean, mean
absolute deviation, median, skewness, standard deviation,
consistency, variance, energy and entropy can be obtained
from the intensity histogram. The second-order features
include the gray co-occurrence matrix and the gray run length
matrix, which can estimate the spatial distribution relationship
of the image gray value. The higher-order features include
the neighborhood gray difference matrix and gray region size
matrix. The gray difference matrix of the neighborhood can
evaluate the pixel heterogeneity between the ROI and adjacent
regions, while the gray region size matrix can evaluate the
characteristics of homogeneous regions (30).

Feature screening. In the process of feature extraction, several
features will be identified, which may lead to overfitting when
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Figure 1. Flow chart of radiomics. The process of radiomics includes image acquisition, ROI segmentation, feature extraction, feature screening and model
building. ROC and calibration curves are often used to evaluate the model performance in the process of model building. ROI, region of interest; ROC,
receiver operating characteristic. The statistical images (feature screening and model building) are from Dr Yanli Wang (unpublished data).

the data set is smaller than the feature set (31). To avoid this
overfitting of the model, several features must be selected.
Feature screening is usually achieved using Al or statistical
methods, and commonly used methods include maximum
correlation minimum redundancy, principal component
analysis and least absolute shrinkage and selection operator
(LASSO) regression, amongst other approaches (32).

Model building. The final step in radiomics is the establishment
of the model, which can combine patient clinical data, suscep-
tibility factors and biomarkers with radiomics to create a more
precise model. For example, a nomogram is often used in the
modeling of imaging omics (33). The establishment of these
models has improved the ability of clinicians to diagnose and
differentiate diseases. Some models can also predict patho-
logical types and patient outcomes, which contributes to the
implementation of personalized medicine and modern medi-
cine. Several studies have combined imaging with genomics,
transcriptomics, proteomics and metabolomics to build
diagnostic models, gene expression models and prognostic
models of diseases (34-36).

3. Al in the radiomics of OC

Traditional imaging diagnosis relies on a clinician's subjective
judgment of the visual information (37). However, Al can
standardize and simplify the process by extracting the avail-
able information from the images by mimicking the cognitive
behaviors associated with the human brain (38). Therefore,
Al can be applied to the process of feature screening and
model building in radiomics. The significant differences in
Al diagnostics using imaging depend on who created the Al
model (39). Al includes machine learning (ML), significant

data management and information mining, image processing
and pattern recognition. ML is the approach and core of
medical AI, including supervised learning, unsupervised
learning and reinforcement learning (40,41). Supervised
learning refers to the application of known cohorts as known
information of learning, so as to build a classification and
prediction model for unknown cohorts (42). However, the data
results are not necessary for the construction of the unsuper-
vised learning model, and the data can be summarized and
classified (43). Reinforcement learning is a computational
method to understand and automatically process goal-oriented
learning and decision-making problems, and there are several
advantages, such as direct interaction with the environment
and autonomous learning without the need for emulated super-
visory signals for modeling (44). Notably, ML is an essential
branch of Al, and the major procedures include data collection
and processing, model training and optimization, and model
evaluation, amongst others (45). ML can establish models by
converting medical images into features or labels and subse-
quently performing a mapping from features to labels using
algorithms. ML primarily includes logistic regression, arti-
ficial neural networks (ANNS), support vector machines and
deep learning convolutional neural networks (DCNNs) (46).
Deep learning (DL) is a subset of ML, which can use multiple
ANNSs to solve complex problems based on the structure of
brain neurons. Neural networks can link dependent and inde-
pendent variables together without prior knowledge to detect
patterns and nonlinear interactions in complex data (47).
CNNs, a subset of Al and DL, are a special type of computa-
tional model the principle of which is to imitate neurons and
synapses in the human brain (Fig. 2) (47). A neural network
with more hidden layers is defined as a deep neural network. DL
can solve various classification and prediction problems using
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Radiomics

Figure 2. Relationship of the AI algorithm. The internal inclusion relation-
ship of the AI algorithm, and the paratactic relationship with radiomics.
Al artificial intelligence; ML, machine learning; DL, deep learning; CNN,
convolutional neural network.

deep neural networks; it can also identify features from data
automatically and avoiding manual feature selection, which is
an apparent advantage compared with traditional ML (48).

Radiomics, ML and DL are not independent individuals,
but are intricately intertwined for the most part. The modeling
process in radiomics usually relies on DL (49). AI has been
widely used in the diagnosis of diseases, the differentiation
of benign and malignant tumors, and the prediction of thera-
peutic effects (50) (Fig. 3).

Identification of benign and malignant tumors. The compre-
hensive evaluation of ovarian tumors, both benign and
malignant, requires a preliminary judgment by clinicians
based on symptoms, and laboratory and imaging examina-
tions. At present, the gold standard for determining benign
and malignant ovarian tumors is still pathological analysis
of a puncture biopsy or postoperative pathological examina-
tion. However, the methods are invasive, and puncture biopsy
carries a certain risk of needle path metastasis (51). Therefore,
a number of studies have explored the application of radiomics
in the identification of benign and malignant tumors. For
example, Wang et al (52) retrospectively collected CT images
of patients with EOC from multiple centers to establish a CT
radiomics model that could distinguish high-grade serous OC
(HGSOC). The areas under the curve (AUCs) were 0.837 (95%
CI, 0.835-0.838) for the training cohort and 0.836 (95% ClI,
0.833-0.840) for the testing cohort. The study confirmed that the
radiomics model is important for the individualized treatment
and prognostic evaluation of patients. Similarly, Li et al (53)
reported the effectiveness of radiomics. This previous study
established a radiomics model to identify benign and malig-
nant ovarian tumors based on 143 CT images. The AUCs for
both the training set (0.88) and the test set (0.87) were high,
which confirmed the discriminative ability of the model. A
nomogram combining clinical information and serum markers
was also created. Saida et al (54) reported that the established
CNN model of OC diagnosis based on MRI also showed a
good diagnostic effect. Moreover, it was demonstrated that the
differential model based on radiomics had a higher average
diagnostic efficiency than the radiologist (internal data set:
88.8 vs. 85.7%; external validation data set: 86.9 vs. 81.1%), and
the combined use of the model could improve the efficiency of
the radiologist. The accuracy [87.6% (95% CI, 85.0-90.2) vs.

78.3% (95% CI, 72.1-84.5); P<0.0001] and sensitivity [82.7%
(95% CI, 78.5-86.9) vs. 70.4% (95% CI, 59.1-81.7); P<0.0001]
of DCNN-assisted diagnosis were higher than the values for the
radiologists alone (55). Wang et al (56) also explored the MRI
of 201 patients with borderline ovarian tumors and 99 patients
with EOC, and established a differential diagnosis model based
on DL. The results revealed that the accuracy of the Al model
was higher than that of the radiologists. A recent study showed
that the models based on DL had an AUC of 0.93 (95% ClI,
0.85-0.97) for differentiating malignant from benign ovarian
tumors, which was comparable with the Ovarian-Adnexal
Reporting and Data System (O-RADS) (57) (AUC, 0.92; 95%
CI, 0.85-0.97; P=0.88) and expert assessment (AUC, 0.97; 95%
CI, 0.91-0.99; P=0.07) (58). The models based on DLdecision,
DLfeature, O-RADS and expert assessment achieved sensitivi-
ties of 92,92, 92 and 96%, respectively, and specificities of 80,
85, 89 and 87%, respectively, for malignancy. Therefore, the
models based on DL may distinguish malignant from benign
ovarian tumors with a diagnostic performance comparable to
expert subjective and Ovarian-Adnexal Reporting and Data
System assessment. In addition, the specificity and sensitivity
of the models established by different Al algorithms for the
identification of ovarian tumors are also different (58). Other
researchers have also shown that Al models based on ultrasonic
images have high accuracy and sensitivity for the identification
of OC, and the differentiation of benign and malignant tumors.
Furthermore, the diagnostic efficacy is similar to that of ultra-
sound experts (59,60).

Pathological classification. EOC is classified into type I
and type II according to the classification standard of female
reproductive organ cancers from the WHO in 2014 (61). Due
to the difference in treatment and prognosis between type I
and type II EOC, it is necessary to classify the pathological
type after a diagnosis of OC (5). In this regard, Tang et al (62)
investigated ultrasonic images of patients with EOC (n=154),
and divided them into type I and type II EOC according to
the pathology. The seven features with the greatest differences
were screened out using LASSO regression ten-fold cross-vali-
dation. As a result, an identifiable model was established with
satisfactory predictive efficiency, with AUCs of 0.817 and
0.731 for the training and test sets, respectively. Furthermore,
radiomics can be utilized to evaluate tumor heterogeneity
in addition to predicting pathological types. Xu et al (63)
analyzed the MRI results of patients with EOC (n=146), and
established a model and nomograms for distinguishing EOC
from borderline ovarian tumors and EOC subtypes using
logistic regression. The study mapped not only the solid
components of the tumor tissue, but also the overall region of
the tumor tissue, providing a more complete evaluation of the
tumor heterogeneity. Jian et al (64) conducted a multicenter
retrospective analysis of MRI results in patients with EOC
(n=294) and established a radiomics model that distinguished
type I from type II by extracting relevant radiomics features
from axial sequences of T2-weighted images with fat satura-
tion (T2WIFS), diffusion-weighted imaging (DWI), apparent
diffusion coefficient and contrast enhanced (CE)-T1WI. The
model showed good diagnostic performance in both internal
and external validation cohorts, with AUCs of 0.806 and
0.847, respectively. Additionally, an occlusion experiment was
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conducted to locate the critical areas of the image for model
building and diagnosis. The results showed that the most
important area used to identify type I and type II EOCs was
located at the junction between solid and cystic components,
and in the area with a low density of solid components in
T2WIFS. This conclusion may provide a basis and guidance
for puncture diagnosis of tumors and pathological sampling.

Gene mutation state. Studies have demonstrated that ~50%
of EOC cases carry homologous recombination repair
defects, which are primarily caused by mutations in the
breast cancer susceptibility gene (BRCA). BRCA can partici-
pate in the repair of DNA double-strand breaks during the

process of homologous recombination repair, and is a crucial
tumor suppressor gene (65,66). Patients with advanced OC
accompanied by BRCA mutations are more responsive to
platinum-based chemotherapy drugs, exhibiting higher
objective response rates and survival rates (66-69). The
5-year survival rate and progression-free survival (PFS)
rates of patients with BRCA mutation-positive OC are higher
than those without mutations (70). Moreover, BRCA1/2
mutation-positive patients have also shown good reactivity
when treated with platinum-based agents in patients with a
recurrent case of OC (71). Therefore, it is essential to make
a definitive diagnosis of any BRCA mutations before treat-
ment in order to aid the clinical planning and evaluation of a



6 WANG et al: ARTIFICIAL INTELLIGENCE FOR OC

patient's prognosis. Current guidelines from different scientific
societies also recommend the genetic testing of BRCA1/2 for
newly diagnosed patients with a non-mucinous EOC (72).
Although puncture sampling is commonly used to detect
BRCA gene status in patients, it is an invasive method that may
cause cancer cell metastasis along the puncture needle tract
during the process. Furthermore, the gene expression within
tumors may have certain heterogeneity (73), and the puncture
sampling method can only perform genetic identification on
some of the tissues, instead of evaluating the overall genetic
diversity of the entire tumor (74). Additionally, genetic testing
is costly and time-consuming (75). Radiomics has emerged as
a promising alternative to genetic testing in recent years. A
number of studies have applied radiomics to assess the gene
state of OC. Meier et al (73) retrospectively collected the
CT images from 88 patients with HGSOC, and extracted the
texture features. The results showed that the radiomics features
were significantly correlated with the prognosis of the patients,
but not with the status of BRCA mutations, which may be due
to the small number of patients assessed. In addition to BRCA,
Ki-67 was also significantly correlated with the recurrence and
prognosis of OC. Wang et al (76) analyzed the PET/CT images
of patients with HGSOC (n=161). The radiomics features of the
whole tumor area were extracted based on a Habitat method
and a model for predicting the Ki-67 status of OC was estab-
lished. The results verified that radiomics could predict the
expression of Ki-67 accurately and might be a novel marker to
replace Ki-67. Additionally, the Habitat model could stratify
prognosis more efficiently (P<0.05).

Metastasis. Advanced OC is typically accompanied by
intra-abdominal diffusion and distant metastasis at first diag-
nosis. It has been shown that the 5-year survival rate of patients
with OC is only 20-45% (77). Therefore, it is essential to detect
metastases early, as this affects the treatment used and the
management from stage to stage. However, the positive rate for
detection of small metastases by conventional means remains
poor (78). A novel approach, radiomics, has been shown to
predict metastasis more accurately (79). Ai et al (80) explored
the CT images of patients with OC (n=101), and identified nine
radiomic features for screening from a total of 184. The results
revealed that the radiomics model and the comprehensive
model combined with age and cancer antigen 125 levels could
be used to predict the metastatic status. Similarly, MRI-based
research has validated the role of radiomics in predicting OC
metastasis. Yu et al (81) established a nomogram for predicting
peritoneal metastasis based on radiomics characteristics and
clinical data from FS-T2WI, DWI and dynamic CE-MRI
images of 86 patients with OC. The comprehensive nomogram
(AUC, 0.902) combining radiomics characteristics and clini-
copathological risk factors showed a better diagnostic effect
than the clinical model (AUC, 0.858) and the radiomics model
(AUC, 0.846). These findings suggest that the radiomics model
is a promising method for predicting OC metastasis, particu-
larly small metastases, and may thus be used to improve the
detection rate.

Postoperative residue and prognosis. In total, >70% of patients
with OC are diagnosed at an advanced stage (82), and the
current standard treatment involves initial tumor cell reduction

and platinum-based chemotherapy. However, the effectiveness
of initial tumor cell reduction and patient response to chemo-
therapy drugs vary due to individual differences (such as gene
mutation status and physiological status) and tumor heteroge-
neity. Therefore, it is important to predict a patient's response
before and after treatment (83). Radiomics has emerged as a
promising tool for predicting the postoperative tumor residual
status of patients and the risk of recurrence after receiving
chemotherapy drugs, which will be conducive to the selec-
tion of chemotherapeutic drugs, chemotherapeutic methods
and the formulation of individualized follow-up periods (84).
Lu et al (85) applied ML to obtain the radiomic prognostic
vector (RPV) for 364 patients with EOC. It was reported that
RPV could be used to assess patient outcomes in discovery
datasets, which was well validated in validation datasets and
the Cancer Genome Atlas validation dataset. Meier et al (73)
extracted CT features from pre-treatment images of 88 patients
with HGSOC and found that these features were relevant to
patient PFS and OS time. A study by Hong er al (86) also veri-
fied the ability of a model to predict OS in patients with OC.CT
images of serous OC were selected from the cancer imaging
archive as the model training set, while images collected in
the study hospital were used as the validation set, and three
radiomics features were finally screened out. Furthermore, the
nomogram, in combination with clinical data, was established
as a model to evaluate the OS with serous OC, which will
be helpful for the formulation of treatment strategies and the
prognostic evaluation of patients. Wei er al (87) verified the
relationship between PFS and the radiomics characteristics
of advanced HGSOC through Kaplan-Meier survival analysis
and a Cox proportional risk model, and established a nomo-
gram for predicting the recurrence risk of HGSOC. Notably,
not only did the model have a good predictive effect, but other
DL models based on MRI and CT images did also (88,89).
Compared with CT and MRI, ultrasound is more convenient
and economical. In recent years, ultrasonography has been
used to establish a prognostic model for OC. In one study,
111 patients with EOC were examined by transvaginal ultra-
sonography, and the characteristics of ultrasonography were
extracted to establish a comprehensive PFS prediction model
combined with clinical variables (90). Additionally, AI can
predict the length of postoperative hospital stay for patients
with HGSOC (91), which may contribute to the individualized
treatment and management plans in clinical practice.

Response to chemotherapy. Lei et al (92) included MRI
(CE-T1WI and T2WI) of 93 patients with EOC who had
received platinum-based chemotherapy (=4 cycles), and estab-
lished two different models based on the primary tumor or
the entire abdomen as areas of interest. Furthermore, 1,024
features were extracted using the pre-trained CNN model. The
results showed that the whole abdominal DL model based on
MRI was effective in predicting the sensitivity of patients with
EOC to platinum-based therapy (Table I).

Identification of whole slide images based on DL. A patho-
logical biopsy is the gold standard for diagnosing EOC, and it
is also a mandatory examination mode during postoperative
chemotherapy in patients with advanced OC. The clinician
can make a more individualized treatment plan for the patient
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based on the pathological findings. The traditional pathological
diagnostic method is to stain the tissue with hematoxylin and
eosin (H&E) and observe samples under a microscope (93).
However, the method of diagnosis depends on the experi-
ence of the pathologists and is thus subjective. Furthermore,
the storage of slices is a difficult problem after pathological
diagnosis, and there are certain limitations in remote consulta-
tion. Whole slide imaging (WSI) can transform pathological
tissue sections into high-resolution digital images using a
computer and full-slice digital scanning technology. WSI
has solved the limitations of traditional diagnostic methods,
and has improved the efficiency and accuracy of pathological
diagnosis (94). DL has been widely used in the field of medical
pathological image recognition, where it can improve the
degree of digitization of pathology and also plays a vital role
in the analysis of pathological images (95).

Prediction of different pathological subtypes. The therapeutic
scheme of OC is dependent on its pathological subtypes, which
require different chemotherapy drugs and treatment plans.
The identification of the subtypes predominantly relies on
the subjective judgment of pathologists; however, the interob-
server consistency of pathologists is often low (Cohen's k,
0.54-0.67) (96). Farahani et al (96) developed four deep CNN
algorithms to identify pathological subtypes of OC using WSI
in 545 patients. The highest scoring CNN model showed high
concordance with pathologists in diagnosing OC pathological
subtypes [81.38% concordance (Cohen's k, 0.7378) in the
training set and 80.97% concordance (Cohen's k, 0.7547) in the
external dataset], indicating that CNN may be used as an auxil-
iary diagnostic model to improve the efficiency of diagnosing
OC pathological subtypes. In addition, the model established
based on WSI had good efficacy in predicting the effect of
OC chemotherapy drugs. Wang et al (97) developed a weakly
supervised DL to accurately predict the therapeutic effect
of bevacizumab in patients with OC by analyzing the entire
image of histological H&E staining. This method can guide
clinical treatment decisions by screening out patients who are
likely to show a poor response. A Cox proportional risk model
showed that the model could predict patients at a higher risk
of recurrence due to a poor treatment response compared with
patients with a more favorable treatment response. The afore-
mentioned results indicated that the combination of WSI and
DL in pathology could effectively extract relevant information
from high-throughput pathological data, and provide more
instructive information for improved precision treatment.

Prediction of the mutation status of a gene. Different patho-
logical types of EOCs exhibit varying gene mutation sites,
with ~50% of EOCs displaying homologous recombination
repair defects. Homologous recombination repair defects are
primarily caused by mutations in the BRCA gene, which plays
a crucial role in the DNA double-strand break repair process
during homologous recombination repair and is considered an
important tumor suppressor gene (66). Patients with advanced
OC carrying BRCA1/2 mutations demonstrate increased
sensitivity to platinum-based chemotherapy drugs, and exhibit
higher objective remission rate and survival rates following
treatment with platinum-based drugs. Furthermore, the use of
poly(ADP-ribose) polymerase inhibitors after platinum-based

chemotherapy can significantly reduce the recurrence rate
and the mortality rate of patients with OC (69). Notably, a
DL model can be employed to identify gene mutations by
analyzing the H&E-stained pathological images of tumors.
Ho et al (98) utilized DL to analyze the WSI of patients with
OC and developed a model that could predict the mutation
status of the BRCA gene mutation in HGSOC. These studies
demonstrate the potential of DL based on WSI in quantifying
tumor histopathological features and related gene behavior.
Nero et al (99) applied weakly supervised learning based on DL
to analyze the WSI images of 66 patients with HGSOC. While
the model exhibited zero errors in the training set, its perfor-
mance in the verification set was mediocre, with an AUC of
0.59. In addition, this model was also used to predict PFS, with
an AUC of 0.71, indicating a good prognostic performance.

Predictthe efficacyandprognosis ofdrug therapy.Currently,the
standard treatment for EOC is cytoreductive surgery combined
with platinum-based chemotherapy, but patients with different
pathological types of OC have different sensitivity levels to
platinum-based chemotherapy. Laury et al (100) utilized the
WSI of patients with HGSOC who underwent platinum-based
chemotherapy with different resultant effects in order to estab-
lish a CNN model for predicting the effect of platinum-based
chemotherapy. The CNN-based model was effective in distin-
guishing patients with different responses to platinum-based
drugs, exhibiting both high sensitivity (73%) and specificity
(91%). With the occurrence of chemotherapy resistance and
refractory diseases, the sensitivity of platinum-based chemo-
therapy has declined (101). Bevacizumab, an antibody against
vascular endothelial growth factor, has been used in the first-
and second-line treatments of OC. Wang et al (102) collected
the WSI results of patients with EOC and peritoneal serous
papillary carcinoma, and established a DL model to predict
the therapeutic effect of bevacizumab. The results showed that
the new model could predict the effects of treatment without
guidance or prior knowledge of the pathology. The proposed
DL model could effectively distinguish patients who would
respond well from the patients whose recurrence rate would
be low after treatment and those whose disease was likely to
deteriorate after treatment. Wu ef al (103) appraised the WSI
results of patients with OC through DL, and developed risk
scores for these patients. The AUC of the time-dependent ROC
curve verified the good predictive performance of risk scores.
Additionally, the researchers analyzed the differential survival
rate of patients with different homologous repair deficiency
states using the aforementioned model. The DL model not
only facilitated overall risk stratification of patients with OC,
but also distinguished between different subtypes in terms
of the prognosis, which could be used to provide a basis for
targeted therapy for patients with OC (Table II).

4. Other Al-based omics in OC

Genomics. DL models based on various other omics-based
approaches have also emerged in addition to radiography
and pathological images, and these may also play a role
in exploring the occurrence and development of diseases.
Guo et al (104) applied DL to analyze multi-omics OC data
using three datasets from the Gene Expression Omnibus
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Table II. Continued.

C, Predict the efficacy and prognosis of drug therapy

Al

model

Number of

(Refs.)

Main conclusion

Main result

patients

Disease

First author, year

(103)

The DL framework is a promising method

for searching WSIs and providing a

The mean value of the resulting C-index was 0.5789 (range,

0.5096-0.6053), and the resulting P-value was 0.00845.

DL

90

oC

Wu et al, 2022

valuable clinical means for prognosis.

Al artificial intelligence; OC, ovarian cancer; EOC, epithelial ovarian cancer; HGSOC, high-grade serous ovarian cancer; ML, machine learning; DL, deep learning; CNN, convolutional neural network;

AUC, area under the curve; PFS, progression-free survival; WSI, whole slide imaging.
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database. Furthermore, a DL framework that could integrate
multi-omics data and denoising autoencoder to identify OC
subtypes was established. The results showed that this method
could be used to identify OC subtypes at the molecular level
with satisfactory efficiency. In addition, differential expression
analysis and weighted gene co-expression network analysis
were used to screen out target genes associated with specific
molecular subtypes. Finally, 34 biomarkers and 19 Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
associated with OC were identified. Similarly, Ye ez al (105)
identified the pathogenic genes of OC based on omics data
and DL. CNN was used to predict OC-related genes, and the
AUC and the area under precision-recall curve of the model
were 0.761 and 0.788 respectively, which proved the accuracy
and effectiveness of the model. Moreover, gene set enrichment
analysis revealed 245 novel OC pathogenic genes and 10 asso-
ciated KEGG pathways. Cell-free tumor DNA (cfTDNA) is
also associated with the occurrence and development of OC.
cfTDNA can be released along with the occurrence of cell
necrosis and apoptosis, and the release of cancer cells. The
levels of circulating cell-free DNA (cfDNA) in patients are
high, and mostly originate from tumor cells (106). Therefore,
Bahado-Singh ez al (106) performed genome-wide DNA meth-
ylation analysis of cytosine markers and used Al to identify the
most predictive epigenetic markers in the genome. The results
revealed that the AI model based on cyclic cfDNA cytosine
methylation changes is effective in diagnosing OC (AUC, 1.00;
sensitivity, 100%; specificity, 88%).

Transcriptomics. Aghayousefi et al (107) applied a DL model
to screen microRNAs (miRNAs/miRs) related to OC occur-
rence, and found that miR-1914, miR-203, miR-135a-2, miR-149
and miR-9-1 were the risk factors associated with OC with
the highest frequency. Moreover, the study suggested that the
miRNAs may participate in the epithelial-mesenchymal trans-
formation of cancer cells, as well as the heterogeneous and
adaptive processes of tumors. Hamidi et al (108) compared the
differences in miRNA expression between patients with OC and
healthy individuals using the public data platform GSE106817
dataset (109). The study screened out 10 miRNAs regulated in
OC samples and developed a clinical prediction model using
ML (logistic regression, random forest, artificial neural network,
XGBoost and decision tree). ROC analysis showed that the
miRNA model exhibited a good diagnostic performance, and
the AUC of the first four prediction models was 100%, which
indicated that the OC diagnostic model based on the serum
miRNA spectrum may have important clinical value.

Metabolomics. Irajizad et al (110) performed metabolomic
analysis on the serum samples from 101 patients with serous
and non-serous OC, and 134 patients with benign pelvic
masses. A total of seven cancer-related metabolites were
screened using DL. The performance of DL for OC diagnosis
in the early stage was significantly improved when combined
with the risk of ovarian malignancy algorithm.

5. Conclusions and future perspectives

Thus far, Al-based radiomics has shown satisfactory efficiency
in the diagnosis, differentiation and prognostic prediction of
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OC. At the same time, the combination of AI models and
traditional diagnoses from clinicians can improve the accu-
racy and efficiency of diagnosis, and may improve diagnostic
systems in the future. In addition, the prediction of pathological
typing and gene status may serve as a type of ‘virtual biopsy’,
which could reduce the need for invasive tests on patients in
the future. However, there remain several challenges in the
clinical application of Al in OC. Firstly, while there are an
increasing number of multi-omics studies based on genomics,
transcriptomics and proteomics, there are fewer multi-omics
studies combining radiomics and pathomics, which to some
extent limits the clinical application of Al The integration of
multi-omics data has the potential to improve patient survival
and facilitate future precision medicine approaches. Secondly,
there are several Al algorithms, and current research only
builds models around one or a few algorithms. It is neces-
sary to conduct a multi-center comparison of these models
to select the best AI models for general clinical application,
so this scientific research can be truly implemented in a
clinical setting. The number of clinical samples collected by
general research institutes is small and often imbalanced in
terms of representativeness of the subsequent feature extrac-
tion, which is a challenge for AI data processing. In future
studies, considerably larger cohorts from multiple centers and
indeed cohorts from multiple countries are needed to increase
the validity of any models. Additionally, it is necessary to
continuously innovate and improve the algorithms to opti-
mize existing models. Finally, the clinical applications based
on Al models are mostly concentrated in thyroid diseases,
breast diseases and liver diseases, and the research of other
systems remains predominantly in the theoretical stage. In
future work, these clinical models should be used in clinical
prospective studies to assist clinicians in diagnostic and prog-
nostic analyses. The problems and effects encountered by
clinicians when applying artificial intelligence models should
then be summarized, and the models constantly optimized.
Advances in Al-based approaches will improve diagnostic
accuracy, accelerate the diagnostic process, and play a key
role in assisting doctors in decision-making and intelligent
monitoring in the future.

In conclusion, Al has emerged as a powerful tool for the
processing of large datasets, and is being extensively utilized in
the development of diverse omics models for OC. Multi-omics
analysis, including imaging, pathomics, genomics, metabolo-
mics and proteomics, has demonstrated potential in enhancing
the accuracy of OC diagnoses, the differentiation between
benign and malignant cases, and the prediction of pathological
types and prognosis. The integration of multi-omics data
has the potential to improve patient survival and facilitate
precision medicine in the future.
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